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Series Preface
Science and technology have been defining� elements of the modern era. They have entered into 

our lives in large and small ways—through broad understandings of the universe and in the tools 

and objects that make up the texture of everyday life. They have been preeminent activities for 

organizing expertise and specialized knowledge, in defining power and progress, and in shaping 

the development of nations and our relations with others across the planet. In 1996, the Smithso-

nian Institution, the London Science Museum, and the Deutsches Museum formed Artefacts to 

emphasize the distinctive role that museums—through their collection, display, and, especially, 

study of objects—can play in understanding this rich and significant history.

	 Artefacts has two primary aims: to take seriously the material aspects of science and technol-

ogy through understanding the creation and use of objects historically and to link this research 

agenda to the exhibition and educational activities of the world community of museums con-

cerned with the intimate connections among material culture, the history of science and tech-

nology, and the transnational. The effort gradually has gained footing: Artefacts holds an annual 

conference and has expanded its formal organization to include fourteen cosponsors (listed on 

this volume’s copyright page). This expanded community, composed primarily of European and 

North American museums, provides opportunity for more robust professional conversation and 

broadens the range of local and national historical experiences of science and technology repre-

sented in Artefacts. Not least, Artefacts has created a fruitful interplay between scholarly research 

and museum practice. Aided by its Advisory Editorial Board, it publishes this book series, which, 

in conjunction with annual meetings, has helped stimulate a broader turn toward material-based 

research in scholarship and its use in museum collecting and exhibitions. 

	 The Artefacts community believes that historical objects of science and technology can and 

should play a major role in helping the public understand science and technology: the ingenuity 

associated with these activities, their conceptual underpinnings, their social roles, and their local 

and global connotations. We welcome other museums and academic partners to join our effort.

Martin Collins
National Air and Space Museum, Smithsonian Institution 

Series Managing Editor
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Introduction
“Research not communicated is� research not done,” warned Anne Glover, then chief scientific 

adviser to the president of the European Commission, in 2014.1 We might extend this to say that 

scientific research not preserved in some form may in future never have been done so far as the 

historical record is concerned. Likewise, museological research and practice not shared is not 

fully or usefully done: thus, the rationale behind the Artefacts consortium and its annual meetings 

is to provide a forum for communication for people from a range of disciplines concerned with 

the material culture of science and technology. 

	 In 2011, Artefacts XVI at Museum Boerhaave in Leiden addressed the theme of “Concep-

tualizing, Collecting and Presenting Recent Science and Technology.” Building on the research 

presented at the meeting, this volume will focus on the question of collecting post–World War II 

scientific and technological heritage and the equally challenging question of how such artifacts 

can be displayed and interpreted for diverse publics.

	 However, this volume also has another aim, as indicated by the ambiguity of the title Chal-

lenging Collections. In addition to examples of practice and the inevitable detail associated with 

these, we have invited prominent historians and curators to reflect on the nature of recent sci-

entific and technological heritage and to challenge the role of museum collections in the twenty-

first century. 

Challenges of Contemporary Collecting
The interpretation of contemporary scientific and technological heritage is a challenging subject 

for curators and scholars for a number of reasons, for example:

1.	 Mass and Scale. During the twentieth century, notably from World War II onward, scientific 

and technological research saw a dramatic increase in the use of resources, in particular in 

the dimensions of human labor and financial effort. As a consequence, the number and size 

of equipment, prototypes, samples, and setups have significantly grown also, and a curator 

attempting to formulate well-thought-through rationales for the preservation of cultural 

memory may be overwhelmed by the extent of the task. 

2.	 Delocalization. The places of research activity today can be difficult to identify and discern. 

The mobility of both thinkers and their equipment, moving rapidly between different spaces 

and working in international and interdisciplinary networks, leads to a multiplication of 

contexts that need to be studied, discerned, and museologically interpreted, often a change 
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from the locally or nationally specific contexts in which artifact-based collections were first 

conceived.

3.	 Uniformity-Immateriality-Opacity. By their very nature, many artifacts of science and tech-

nology from the past 60 years pose a challenge to preservation, study, and interpretation. 

Specialization, miniaturization, mass production, the use of new materials, and the omni-

presence of electronics have led, among other factors, to highly complex and professional-

ized equipment for research that is both modular and opaque in appearance. The frequent 

exchange and reusage of components, sometimes called cannibalization of research equip-

ment, adds to the difficulty of identifying particular artifacts worthy of preservation. 

	 While bearing these factors in mind, we should be cautious to avoid thinking that today’s 

artifacts mark a uniquely difficult juncture for the collector or scholar. As Jim Bennett reminds us, 

the material record is only ever a partial one: we must be conscious that any collection of artifacts 

represents what was collected, rather than what was actually there.2 Meanwhile, Jeff Hughes has 

argued that the challenge of working on recent history is not methodological so much as politi-

cal—there is always too much source material no matter what period you are working on, and it 

is the historian’s job to manage the scope.3 

	 As Hughes notes, the particular challenge of working on recent material is usually not artifacts, 

but people—the actors who own the artifacts, documents, or memories and who often have their 

own cherished histories to be negotiated by the scholar.4 This can be particularly pressing when an 

artifact is not only collected but exhibited. Public exposure is a valuable commodity, and as Joseph 

Tatarewicz attests, the prestigious spaces of museums can be highly contested; the often-congealed 

histories of artifacts can lead to disagreements between contemporary actors over how they should 

be interpreted.5 Actors in the museum world inhabit what has been termed an “ecosystem of collect-

ing,” with the curator often acting as intermediary in a network of “tastemakers” (including artifact 

makers, collectors, educators, and media) and as the interpreter of artifacts for the public.6

The Changing Role of Collections
In this volume we aim to reflect on not only the nature of scientific and technological artifacts 

post World War II but also the nature of today’s “museum ecosystem” as it has emerged over 

this period. Museums are no longer primarily repositories that preserve and classify material 

culture. They must balance a number of functions, not always mutually compatible: exhibition, 

preservation, research, and education. Collections can be regarded as important material re-

sources for historians of science and technology who in recent decades have moved on from 

telling narratives of progress to exploring science and technology in a wider cultural, social, and 

political context. Meanwhile, over this period the nature of museums’ relationships with their 

public has shifted from one of unquestioned authority to a partner in dialogue: visitors’ needs 

are now considered foremost in exhibition interpretation, and the public may even have a say 

in shaping collections.
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	 Although many science and technology museums were originally envisaged with an educa-

tional remit and the artifacts they contained became historic with the passage of time, in recent 

decades curators and collectors have been increasingly informed by the emergence of academic 

disciplines of science and technology studies, and the history of science, technology, and medi-

cine.7 Thus, an artifact’s current pedagogical value and future historical value must both be taken 

into account at the time of collecting; as Bruce Altshuler argues, “contemporary works valorized 

by entering museum collections—and, to a lesser extent, by being exhibited in museums—are in 

a sense projected into the future, identified as playing a role in an anticipated history.”8

	 In this context, we have invited historian of science and technology Dominique Pestre to 

provide a reflection on the present state of the sciences. Tracing the changing nature and circu-

lation of modern science and its products over the past 200 years, he notes how science has been 

situated between different politics, markets, and publics.  He challenges us to move away from 

idealized narratives of science to consider its blind spots and the downsides of progress and to 

foreground ordinary human experience. Although science and technology will continue to be at 

the core of knowledge, we should be careful to appraise novelty critically, to reflect on our pres-

ent experience within the broader narrative of modern science. He argues against developing 

overly generic or strict criteria for understanding twentieth- and twenty-first-century science 

and technology; instead, we must facilitate an ongoing dialogue, acknowledging that dissent and 

diverging opinions are a normal facet of how we make sense of the world.

	 In our experience, colleagues from different disciplines concerned with the material cul-

ture of science and technology have already made progress toward addressing Pestre’s chal-

lenges; however, as is common for work in progress, much of the dissemination of this work 

has been of the nature of informal conferences and reports within particular professional disci-

plines, and there have been few broadly scoped accounts of the state of the field.9 This volume 

seeks to gather a range of accounts from around the world, showing a variety of activities and 

approaches in conception and execution of collecting practice. Reflecting this variety, the vol-

ume contains a range of styles, from theoretically grounded arguments to practical reports to 

personal perspectives.

Conceptualizing Contemporary Collecting
In building collections that help us make sense of the world, the framework of the historian must 

be combined with the material knowledge, experience, and sometimes sheer instinct of the cu-

rator. In the volume’s first section, we have asked leading curator-historians to reflect on what 

historiographically informed collecting practices might look like when concerned with contem-

porary material culture.

	 John Durant argues that museums are uniquely positioned to tell rich and meaningful sto-

ries about the place of science and technology in late twentieth- and early twenty-first-century 

society as a contribution to a “thick description” approach: several of the artifacts he describes 
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have negligible economic or aesthetic value but pack a powerful emotional punch. Martin Col-

lins suggests that collections of science and technology need to be shaped with consideration of 

the historiography of the period as an ex post approach, providing the example of the spaceflight 

collections of the National Air and Space Museum, Washington, D.C. Robert Bud argues that the 

inherently ahistorical category of “contemporary collecting” can be analyzed historically, explor-

ing its various manifestations over the twentieth century in the Science Museum, London. Henry 

Lowood’s chapter charts the growth of new kinds of artifacts and collections responding to an 

increasingly digital world, which within most museums still remains an area for pioneers.

Networks of Collecting
The rest of the volume is concerned with case studies illustrating aspects of contemporary col-

lecting in practice. Our next section explores how today’s global science and technology are 

being reflected in collecting practices on the national and regional scales; on these scales various 

political and economic trends inevitably influence how artifacts are chosen for collection and dis-

play. As Jia-Ou Song and Dagmar Schäfer show, science and technology collections in China are 

currently growing in light of a policy-driven boom in contemporary science museums and their 

social value in building local and national identities. In contrast, France’s now well-established 

national program prioritizes preservation over museum collecting, leaving it to future genera-

tions to decide what is valuable: Catherine Cuenca and Serge Chambaud report on the creation 

of decentralized repositories safeguarding artifacts of science and technology.

Dialogue and Diversity
We then zoom in on case studies from institutions around the world, showing how today’s collec-

tors are negotiating with a range of people and practicalities and developing their own particular 

solutions. The very different collections of Jennifer Landry and Rosie Cook and of Anna Adamek, 

encompassing specialized chemistry instruments and everyday kitchen technologies, contain ar-

tifacts of strong emotional value to their original owners and users; both have been shaped in 

recent years by also taking into account the value judgements of various museum audiences and 

foregrounding personal stories. Sometimes the historical value of artifacts may be fairly readily 

agreed on by interested parties, but the logistics of preservation are more complex and often lo-

cally specific. Finn Harald Sandberg and Kristin Ø. Gjerde describe the creation of digital repos-

itories documenting Norway’s oil platforms, whereas Teresa Anderson and Tim O’Brien outline 

the challenges of balancing the preservation of historically important radio telescopes against 

their value as working scientific instruments.

Alternative Approaches
Our next two contributors, from within museums and without, offer some alternative per-

spectives on recent collecting practices. Olov Amelin questions whether explicitly stated ra-

tionales, including those present in contributions to this volume, are desirable at all, offering 
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insights from non-method-oriented practices at the Nobel Museum. Karen A. Rader describes 

the growth of an anticollection science center movement inspired by the Exploratorium, chal-

lenging the primacy of artifacts—and also asking us to rethink what we mean by artifact by 

considering whether interactive exhibits might constitute valuable material records in their 

own right. 

Insights and Experiments
Our final section offers a new addition to the usual Artefacts volume format. Bearing in mind 

the work-in-progress nature of our topic, we interviewed professionals from different disciplines 

about their present experiences in the field; their frank insights show the dynamic nature of 

working with recent artifacts. James Hyslop offers insights into a world largely neglected by 

contemporary museum studies: the commodification and circulation of recently made scientific 

artifacts in the private collectors’ market. Osamu Kamei describes research-based efforts to doc-

ument Japan’s industrial and technological heritage, citing case studies of research in progress. 

Universities play a very special role in contemporary heritage efforts as they are particularly 

close to the spaces of the production of knowledge and artifacts. Roland Wittje reflects on his en-

gagement with collection in university environments over more than a decade.  Finally, Thomas 

Söderqvist offers a personal view as historian of contemporary science and technology turned 

curator advocating relinquishing the narrative-oriented approach common in many museums in 

favor of strategies driven by the artifacts themselves.

	 These interviews, and the contributions throughout the volume, demonstrate the variety 

and divergence of opinions and approaches in making sense of recent science and technology 

through material artifacts. We envisage Challenging Collections as part of an ever-evolving di-

alogue among communities of collectors and scholars seeking to keep pace with the changing 

landscapes of science and technology and of museology and historiography. We believe it is im-

portant to continually reflect on our active roles in creating values through the preservation and 

research of material culture and to share our experiences of developing intellectual frameworks 

for collecting. In the words of Howard N. Fox, “Among museums, or within encyclopaedic muse-

ums, contemporary collections might position themselves in the spirit of Wunderkammer, more 

as laboratories and sites of discovery than places of sacred trust intended to preserve the received 

culture. A healthy curiosity is in order. Contemporary curators, like scientists and contemporary 

artists, should not resist experimentation; it’s part of the job.”10

Alison Boyle 
Keeper of Science Collections, The Science Museum

Johannes-Geert Hagmann
Head of Curatorial Department AII - Technology, Deutsches Museum 



﻿ Introduction� xi

Notes
  1.	 Anne Glover, “Science and Decision Making” (plenary paper presented at Science Centre World Summit, Mechelen, Belgium, 

17 March 2014),  http://​www​.scws2014​.org​/​wp​-content​/​uploads​/​2014​/​08​/​Science​-and​-decision​-making​.pdf (accessed 22 
December 2015). 

  2.	 As cited in D. H. DeVorkin, “Space Artifacts: Are They Historical Evidence?,” in Critical Issues in the History of Spaceflight, ed. 
Steven J. Dick and Roger D. Launius (Washington, D.C.: National Aeronautics and Space Administration, 2006), 573–600.

  3.	 Jeff Hughes, “Whigs, Prigs and Politics: Problems in the Historiography of Contemporary Science,” in The Historiography of 
Contemporary Science and Technology, ed. Thomas Söderqvist, Studies in the History of Science, Technology, and Medicine 4 
(Amsterdam: Harwood Academic, 1997), 19–37.

  4.	 Hughes, “Whigs, Prigs and Politics,” 19–37. 

  5.	 Joseph N. Tatarewicz, “Writing the History of Space Science and Technology: Multiple Audiences with Divergent Goals and 
Standards,” in The Historiography of Contemporary Science and Technology, ed. Thomas Söderqvist, Studies in the History of 
Science, Technology, and Medicine 4 (Amsterdam: Harwood Academic, 1997), 71–91.

  6.	 For example, Anders Petterson, “Value, Risk and the Contemporary Art Ecosystem,” in Risk and Uncertainty in the Art World, 
ed. Anna M. Dempster (London: Bloomsbury, 2014), 67–86.

  7.	 Jim Bennett, “Museums and the History of Science: Practitioner’s Postscript,” Isis 96, no. 4 (2005): 602–608, doi:10.1086/isis. 
2005.96.issue-4.

  8.	 Bruce Altshuler, “Collecting the New: A Historical Introduction,” in Collecting the New: Museums and Contemporary Art, ed. 
Bruce Altshuler (Princeton, NJ: Princeton University Press, 2005), 2.

  9.	 For a recent overview of existing initiatives and methods, see, e.g., Marta C. Lourenço and Lydia Wilson, “Scientific Heritage: 
Reflections on Its Nature and New Approaches to Preservation, Study and Access,” Studies in the History and Philosophy of 
Science 44, no. 4 (2013): 744–753.

10.	 Howard N. Fox, “The Right to Be Wrong,” in Collecting the New: Museums and Contemporary Art, ed. Bruce Altshuler (Prince-
ton, NJ: Princeton University Press, 2005), 27.

Bibliography
Altshuler, Bruce. “Collecting the New: A Historical Introduction.” In Collecting the New: Museums and Contemporary Art, ed. 

Bruce Altshuler, pp. 1–13. Princeton, NJ: Princeton University Press, 2005.

Bennett, Jim. “Museums and the History of Science: Practitioner’s Postscript.” Isis 96, no. 4 (2005): 602–608. doi:10.1086/
isis.2005.96.issue-4.

DeVorkin, D. H. “Space Artifacts: Are They Historical Evidence?” In Critical Issues in the History of Spaceflight, ed. Steven J. Dick 
and Roger D. Launius, pp. 573–600. Washington, D.C.: National Aeronautics and Space Administration, 2006.

Fox, Howard N. “The Right to Be Wrong.” In Collecting the New: Museums and Contemporary Art, ed. Bruce Altshuler, pp. 15–28. 
Princeton, NJ: Princeton University Press, 2005.

Glover, Anne. “Science and Decision Making.” Plenary paper presented at Science Centre World Summit, Mechelen, Belgium, 17 
March 2014. http://​www​.scws2014​.org​/​wp​-content​/​uploads​/​2014​/​08​/​Science​-and​-decision​-making​.pdf (accessed 12 Decem-
ber 2015).

Hughes, Jeff. “Whigs, Prigs and Politics: Problems in the Historiography of Contemporary Science.” In The Historiography of Con-
temporary Science and Technology, ed. Thomas Söderqvist, pp. 19–37. Studies in the History of Science, Technology, and 
Medicine 4. Amsterdam: Harwood Academic, 1997.

Lourenço, Marta C., and Lydia Wilson. “Scientific Heritage: Reflections on Its Nature and New Approaches to Preservation, Study 
and Access.” Studies in the History and Philosophy of Science 44, no. 4 (2013): 744–753.

Petterson, Anders. “Value, Risk and the Contemporary Art Ecosystem.” In Risk and Uncertainty in the Art World, ed. Anna M. 
Dempster, pp. 67–86. London: Bloomsbury, 2014.

Tatarewicz, Joseph N. “Writing the History of Space Science and Technology: Multiple Audiences with Divergent Goals and Stan-
dards.” In The Historiography of Contemporary Science and Technology, ed. Thomas Söderqvist, pp. 71–91. Studies in the 
History of Science, Technology, and Medicine 4. Amsterdam: Harwood Academic, 1997.

http://www.scws2014.org/wp-content/uploads/2014/08/Science-and-decision-making.pdf
http://www.scws2014.org/wp-content/uploads/2014/08/Science-and-decision-making.pdf




Reflection



2 �

CHAPTER 1

The Sciences between Technical 
Demiurgy, Economic Matters  
of Fact, and Political Regulations
Historical Overview, Current Situation, 
and Normative Principles

Editors’ note. Decisions about the preservation of 

artifacts of recent scientific heritage involve value 

judgements as to which artifacts are characteristic 

of science in the present era. Although a critical his-

torical appraisal might benefit from the distance of 

time, decisions as to which artifacts to retain must 

often be taken swiftly and potentially in the absence 

of consensus. To consider how such decisions might 

be made more effectively through a historically in-

formed long view, we invited Dominique Pestre 

to provide an overview of the sciences—and their 

actors, locations, and products—over the modern 

period. Here, he offers a perspective from science and technology studies as to how we, as both 

consumers and collectors of today’s science, might approach our choices.— A.B., J.-G.H. 

Academic works currently abound on the� links between knowledge, technologies and science, 

society, politics, and democratic regulations. The phenomenon started to take shape in the early 

1980s when science studies began to deal explicitly with the relationship between scientific 

knowledge, social worlds, and politics when Latour published “Give Me a Laboratory and I Will 

Dominique Pestre
Professor

École des hautes études en sciences 
sociales 
Paris, France
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Raise the World,” Shapin and Schaffer published Leviathan and the Air-Pump, and Haraway 

published “A Cyborg Manifesto.”1 At the same time, an intellectual movement drawing on the 

work of Robert Mumford, Herbert Marcuse, and others had continued to flourish around critical 

analyses of technologies.2

	 In the interests of simplicity, I would suggest that today, in both academia and the public 

domain, two main narratives underpin science-in-society studies. The first contends that soci-

ety’s trust in science has disappeared. There are two opposing variations on this theme. The first, 

which is more common in the political, economic, and scientific spheres, contends that we are ex-

periencing a historical regression in terms of rationality, universalism, and Enlightenment values, 

that the social realm has become irrational. The symmetrical version, which is at the core of sci-

ence and technology studies, claims that society has cast off the tutelage that previously shackled 

it, that a new civil society has succeeded in grasping its autonomy and developing its own forms 

and technologies of knowledge.3 Obviously, these two interpretations give rise to diametrically 

opposed politics—top-down technophilia versus bottom-up participatory politics—a point that 

is, of course, of central importance. On the other hand, neither version seriously challenges the 

veracity of the point of departure—that science and techniques have been easily “trusted” in the 

past.

	 The second theme currently in vogue today claims that we have emerged from the insouci-

ant modernity inherited from the eighteenth century to become conscious (as good postmodern-

ists or “amodernists”) of the ravages we have caused to our environment.4 We are now supposed 

to seriously consider the consequences of our technoindustrial development and have entered 

an era in which “risk societies” have realized that they cannot but also be “reflexive societies.”5 

Again, these narratives about precaution and reflexivity raise the question of the relevance of what 

is stated. My first contention is that these narratives make up a simplistic image of the past—an 

image largely false, as historians have documented6—probably to display our own excellence (we 

are reflexive) and avoid taking seriously into account the (positive and negative) effects of the 

solutions advocated in the last two centuries. They also let us believe that our precautionary atti-

tudes are grounded in fact—we are beyond crude modernity—an assumption that, when looking 

at all curves defining what is usually called the Anthropocene, is more than debatable.7

	 These approaches have two other (and perhaps more important) weaknesses: They tend to 

frame the problem as mainly a matter of relationships between two entities (science and society) 

occurring mainly in one context, the public space, which is far too simple to be of interest. In 

posing the problem this way, these approaches forget actors (states, international finance, indus-

trial products) and social spaces that are most decisive: the way products and technoscientific 

offerings are deployed, for example, how they circulate, the role that markets play; the fact that 

top-down forms of government (set up by states, business, or media) always sidetrack the public 

space and interfere with dialogical orders; the fact that the public sphere is compartmentalized, 

made of many spaces and opinions, that the Habermassian notion is far too ideal to be taken at 

face value; and also the fact that many regulations have been deployed over the last two centuries 
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and it might be useful to look at their efficiency/inefficiency. And although certain regulations are 

implemented through dialogical spaces, others are conceived and enforced independently via 

market regulations, positive law, contracts, and ethical norms.8 If our purpose is to point out the 

contradictions and synergies with which we are confronted and to consider the principles that 

could underpin a normatively assumed attitude, it is essential that we radically complexify our 

analytical tools. 

	 To do so and show the immense variety of logics, actors, and contexts we have to consider, a 

historical detour might prove worthwhile. I will thus start by looking at key historical moments, 

around 1800, around 1900, and around 2000, and try to show changes and continuities. I will 

then comment on the relationships between contemporary technoscience, expertise, and civil 

society and on the multiplicity of social spaces in which assessments are made and decisions 

taken. Finally, I will become normative and propose some principles for the future—principles 

that might also be of interest for exhibition and museums curators. Not being an expert in this 

field, however, I will not enter detailed, concrete consequences, but I have no doubt readers of 

this volume could and will do it.9

“Modern Science” between Economics 
and a New Social Order: Circa 1800
We could say that knowledge (and knowledge production) underwent major changes between the 

sixteenth and eighteenth centuries, that new practices and social spaces, which we now label sci-

entific, emerged.10 Agreeing on exactly what that meant, what happened and was then “invented,” 

however, is not so simple. For some, there was a scientific revolution geared on a philosophical 

shift—a move to Platonism.11 Mathematization is another key word for that change, meaning that 

natural philosophers now limited their ambitions by plotting only numerical relations between 

measurable entities. Others saw the change, and I do not take into account medicine or natural 

history, as stemming from the deployment of instrumented laboratory experiment as a primary 

source of knowledge—the generalization of experimentum to the detriment of shared experien-

tial.12 Other historians claim that the crux of the matter lay in the juncture between the universe 

of practical mathematics and natural philosophy, in the link to the mechanical and technical arts, 

to machines.13 For others the central element was the emergence of new social spaces for knowl-

edge production (from Italian courts to academies and military institutions) that progressively 

superseded universities, placed new constraints on the producers of knowledge, and gave rise to 

different types of approaches and knowledge (Figure 1).14

	 One way to (partially) summarize this is to say that this new set of practices relies on a cer-

tain disposition via-à-vis its object, on an operational, instrumental, and pragmatic way of looking 

at and analyzing the world. What was deployed was a modus operandi that offered a practical 

way of mastering objects and phenomena, an approach that could easily lead to the deployment 

of technologies—a means, to use the Cartesian expression, of enabling man to become lord and 
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master of nature. In the process, nature was objectified, considered stable and regular, subject to 

(eternal) laws, just like the world created by the Christian God at the end of the Middle Ages, re-

plete with its own immutable life, a world in which this God no longer intervened directly except 

under very special conditions.15

	 You will note, extending Latour, that this image is built on a dual cleavage: between ac-

tive and passive, subject and object, culture and nature, between human (and mostly mascu-

line) actors and a nature without any agency that they conveniently dissect. But the cleavage is 

also between transcendence and immanence, truth and contingency, knowledge and action in the 

world. Or, to talk like Descola, a major French anthropologist, we could say that a new “naturalist 

cosmology” was given shape, a new way to connect humans’ inner and outer realities and human 

realities with other beings, entities, and worlds.16

	 People often admit that, particularly since the second half of the eighteenth century, other 

changes took place, this time comprising political and economic, philosophical, and legal transfor-

mations.17 What lay behind these developments is complex. From a political perspective we can 

point to the secularization of European political power beginning in the sixteenth century, what 

Marcel Gauchet, borrowing from Max Weber, has labeled the disenchantment of the world—the 

fact that God was progressively removed from legitimate justifications of public life. This was 

accompanied, in the eighteenth century, by new modes of producing goods (think of coal, power 

engines, and the mechanization of textile production) and by a new unfurling market economy, 

1. 
A General Display of the Arts and Sciences, Sebastian LeClerc, 1798 engraving. © Science Museum / Science & Society 
Picture Library.
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booming consumption in the cities, and the circulation of products proposing new lifestyles to an 

ever-greater number of people.18 

	 Legal and ownership rights were also overhauled at this time, and a new concept of patent 

was developed in America and France in the early 1790s.19 The new patent relied on the idea 

of radical newness; it purported to harness the initiative of all in the name of common techni-

cal progress, declared that ownership rights were universal, and brought them to life through 

written and graphical representations. The patent “deterritorialized” the process of invention, 

as Biagioli says, removed privilege as a political form, and sidelined the physical presentation of 

objects as a basis of proof. As a result, new kinds of collections emerged: patent collections. They 

were made public via printed documents of all sorts and were often paralleled by collections of 

material models and machines (Figure 2).

	 All these transformations helped recast the economic and political ontologies promoted by 

the American and French Revolutions: the notion of individual contracting parties, the values 

of universalism or freedom, the notion of representation as both a political and a technical tool. 

They contributed to the emergence of these autonomous individuals that composed “bourgeois 

civil society,” to quote Habermas, who believed they had total mastery over both themselves and 

their environment and who nurtured public debate and intended to govern themselves freely. In 

the process, what came to be later defined as traditional lifestyles—quite diverse forms of life, 

different relationships with nature, and complex bases of ownership—was eradicated in favor of 

simpler, dichotomous, instrumental, and more “efficient” forms.20

	 There is no doubt that changes both in knowledge and knowledge production and in the so-

cial, political, and economic worlds interfered and have shared histories and values, as suggested 

by Hessen in his famous text of 1931, by Merton in his thesis of 1938 that linked English puritanism 

with the emergence of modern science, and by Funkenstein when he characterized the new science 

as a “secular theology.”21 The shared values included, at least rhetorically, an overt rejection of acts 

of authority, a declared stance of modesty and equality (in dealing with facts, in front of the law as 

in political terms), a duty to have recourse to Reason in arguments (be they philosophical, political, 

or scientific), and the use of rational forms of debate as the means of settling disagreements. 

	 From a more political and eschatological perspective, both changes—even if we had never 

considered them separate—also shared a new sense of history, a sense of progress, and a Pro-

methean, demiurgical approach.22 From Condorcet to the liberal thinkers, a new vision of society 

and knowledge emerged as part of an inexorable, common process of transformation. The quasi-

exclusive link of the new science to the sovereign thus broke down, and it was turned into a full-

fledged actor in both the economic and the public dialogical spheres.23

	 We should also stress, however, that there was a contradictory and conflictual relationship 

between these new forms of scientific knowledge (and their associated technical developments) 

and the political and dialogical order for two main reasons. First, that new kind of knowledge, 

which was backed by economic and administrative elites mobilized to promote their nation’s 

strength in the international competition, regularly claimed to be of superior, more proven value 
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2. 
The 1801 patent application by Abraham-Louis Breguet for a tourbillon mechanism. Image courtesy Breguet.
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and as such not really open to debate.24 Second, that new form of knowledge was not merely 

bookish. It developed in such a manner (from an instrumental and operational perspective, as I 

have said) that it could easily be deployed through all types of machines and processes. It had 

notably a propensity to become embodied in industrial plants and in products entering social 

worlds via markets (Figure 3).

3. 
Cement-steel works, René Antoine Ferchault de Réaumur, 1722. Photo: Deutsches Museum Archives.
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	 These products (machines or chemicals) redefined material and social worlds. They shifted 

the equilibria between persons and groups, revamped relations with nature, and threatened ex-

isting forms of life. They triggered refusals and requests for protection since they poured into 

society without debate, without public opinion being given a say, at the moment they were dra-

matically affecting people’s environments and lives. The promotion of sciences and techniques, 

terms that started to be used interchangeably by both their proponents and detractors in the 

nineteenth century, thus often ran headlong into the promotion of the dialogical order.

	 In this sense, contrary to well-worn theories in vogue from the French Third Republic 

through to interwar and Cold War America,25 there is no organic link, no osmotic relationship, 

no relation of congruence between modern science and democracy. As a corollary, there is no 

antinomy between science and Nazism or Communism. Science can easily become a potentially 

inhuman institution of authority—history is littered with examples. Science offers and has always 

offered its services to key institutions of power, regardless of their nature.26 In more theoretical 

terms, the point is easier to grasp if we stop idealizing science and learn to consider the diverse 

sciences and technologies in their banal and ordinary human, social, industrial, economic, and 

political embodiments.

	 Therefore, from the early 1800s, the links between these diverse entities that I provisionally 

labeled new knowledge, sciences, techniques, society, institutions, production, markets, states, 

regulations, and democratic forms are all present. These links are complex and structured around 

points of convergence, as well as conflicts that may be systemic and that remain more than ever 

at the heart of today’s great issues.

Industrial Modernity, War, and 
Nation States: Circa 1900
Fast-forward 100 years and the links between science, technology, production, and politics are 

much closer.27 In the last third of the nineteenth century, science began to occupy a key position 

in economic construction, nation building, and war. Laboratory sciences (physics or chemistry as 

practiced by German university professors, for example, in links with new companies) came to be 

more directly relevant to economic development (take submarine telegraphy, organic chemistry, 

and radio), to defense policy (consider the stabilizing platform for navy fire), and to population 

management (think of eugenics). Teaching laboratory science became the norm in Cambridge, 

Berlin, and Paris, products for mass consumption exploded, and states began to pour money into 

universities and technical schools and create bodies to encourage research (such as the Kaiser-

Wilhelm-Gesellschaft). The state, scientists, and industrialists banded together to set up national 

research institutes and metrological centers to facilitate mass production. The first and most 

well-known example of such a metrological center was the Physikalisch-Technische Reichsanstalt 

set up in Berlin in 1887 by the three major figures in politics, economy, and sciences: Bismarck, 

Siemens, and Helmholtz. In short, as Edgerton put it, the sciences were then “nationalized,” 
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meaning that they became intimately bound up with technology, industry, economy, and state in 

the national frame.28

	 This integration of the sciences into the very heart of nation building arose from the new 

technical potential offered by “pure sciences” (a key expression in late nineteenth century). But 

that was not enough. It also resulted from the management requirements of the large technical 

systems that were fanning out: gas lighting, railroads, electrical systems, intensive agriculture.29 

It found decisive resources in new managerial techniques (think of Taylorism), in the skills of 

workers, and in the know-hows embodied in small, science-intensive companies (such as Zeiss in 

optics). Thence, also, there was the invention of a whole new world to handle potential technoin-

dustrial hazards (by experts, government departments, legal proceedings, etc.) and the waves 

of enthusiastic or alarmist declarations surrounding modernization.30 In a nutshell, this period 

experienced the emergence of an already intensely reflexive world torn between placing its trust 

in progress and development and an awareness of the risks to which it was left exposed by these 

new scientific, technical, and industrial developments.

	 Amid this process of increasing technification and scientization that has flourished since the 

end of the nineteenth century (and that reached a high point during the Cold War), science and 

the state entered into a hitherto unprecedented degree of symbiosis. More precisely, science be-

came the state’s alter ego, its double, a value and a means of proclaiming a common neutrality.31 

This relationship did not prevent a more individualistic, as well as a more egalitarian and more 

caring, political society from being forged.32

	 Because science tended to consider itself as being at the heart of the industrial revolution 

and because it highlighted the direction of social progress (think of Durkheimian sociology), it 

became a point of reference. Of course, states used it when it suited them—just like industrial-

ists—but science, which milked this situation both for its funding and its symbolic importance, 

became a central institution of authority, a powerful and directive institution at the core of the 

new political and economic order. And that was translated into the creation of many new institu-

tions like international exhibitions, collections, and museums displaying the wonders of science 

and industry.

	 In mid-nineteenth-century literature, it is often the engineer who personifies this type of 

all-knowing science that guides industrial and social progress. To illustrate my point, let us revisit 

Jules Verne’s classic novel The Mysterious Island.33 Many will remember that it tells the story 

of a small group of runaways who wash up on what they believe to be a desert island and of the 

material means by which they develop agriculture and industry on their colony (Figure 4). But 

it is more than just an account of how a small group succeed in recreating industrial civilization 

out of nothing but sheer will, ingenuity, and scientific principles. It is also an evocation of the 

ideal polity that should prevail in a technoscientific and industrial age where a scientist-engineer 

like Cyrus Smith was the only man capable of rising to the occasion. And this colony marches on, 

unhindered by any reverses. Technology is never found to be wanting and never produces any 

side effects. The five inhabitants of the island (six with Master Jup, the ape captured and sent to 
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Nab, the black servant of Cyrus Smith, to help in the kitchen!) benefit equally from the progress, 

the battle for control of nature is waged without respite, and there is no need for any exchanges 

or discussions. Because progress is inherently good, because it relates to science and is thus syn-

onymous with fraternity and the unity of the group, there is no need to debate and choose. There 

is, in short, no need for a political space.

4. 
A Jules-Descartes Férat illustration from Jules Verne’s Mysterious Island, p. 280, 1875. Courtesy of 
Bibliothèque Nationale de France.
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	 My point here is simple: Jules Verne’s image is at the same time most true and a normatively 

dangerous proposition that does not provide an understanding of real problems. It is an interest-

ing image because it reflects a massive reality: the determining influence of engineers and scien-

tists in social dynamics, the systemic autonomy of technoindustrial worlds, and the fact that they 

easily bypass any dialogical order. It is a dangerous image, however, since it masks many things 

and lets us believe that solutions reside in the fusion of science and the political (in the person of 

Smith). It forgets that progress without negative consequences is most rare and does not envisage 

that ordinary (or affected) people could also be sources of interesting knowledge. Of course, sci-

ence and industry offer increasingly sophisticated products that were stored in museums to show 

our ingenuity or warn against their environmental, sanitary, or social effects. But technoscience 

and industry are often blind to the consequences of their actions, and people consider that they 

are entitled to react and talk, something that is an inexorable trend in the democratic makeup of 

our societies that I believe we need to nurture. 

New Sciences, New Liberalism, and 
New Civil Society: The Present Day
Far from disappearing, the key tensions that I have evoked have taken, over the last decades, a 

new dimension and assumed a sharper focus for a number of reasons. First, there has been an ex-

traordinary development in both the range of potential uses and offerings in the technosciences. 

Second, the negative (side) effects of our technological development, alongside the undisputable 

benefits, seem to have changed in scale (think of climate change). Third, after a century of more 

temperate political development, a newly emboldened economic liberalism has altered the bal-

ance put into place one century earlier between individual and collective rights. Fourth, “soci-

ety”—consumers, producers, citizens—is demanding its rights and freedoms in an increasingly 

forthright manner. I would now like to clarify these developments and identify the most salient 

aspects of the issues with which we are confronted at present.34

	 First, the technoscientific sphere is no longer dominated by the same kind of knowledge, the 

same “disciplines,” the same epistemologies or values. From the nineteenth century up to the Cold 

War, it was the physical laboratory–based sciences and associated engineering that influenced and 

guided technical and political choices and left their material footprint on society; it was these sci-

ences, especially basic physics, as was said in the 1950s, that left the most lasting symbolic mark 

and fashioned the norms of “proper knowledge”: think of Popper, who conceives of the sciences 

and their dynamics via only relativity and quantum mechanics. Since the late 1970s, these physical 

sciences have been transplanted by other laboratory-based technosciences in both the popular 

imagination and in reality: the life sciences, biotech, and nanosciences, which are capable of re-

constituting and optimizing biological material and remaking both humankind and nature. 

	 These sciences are eminently pragmatic and focused on technological action and produc-

tion, on patentability and the creation of start-ups: indeed, they might be considered primarily 
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technical (and commercial) and scientific thereafter;35 they lie at the heart of new market prac-

tices, new ways of exercising ownership, and new ways of recomposing individual bodies and the 

social sphere. They do not play as central a role in war as the physical sciences, but as Rabinow 

and Rose have pointed out, they have given rise to brand new forms of biopolitics that are con-

trolled to a much greater extent by individuals than by states.36

	 Scientific practices have also been recast by the deployment of new IT tools, databanks, 

models, and simulations. New fields of science have grown up around the Earth system and its 

equilibria, around climate and biodiversity protection, around risk management and ecological 

engineering issues. It is important here to appreciate the sheer newness of this kind of work in 

comparison with what contributed to the historical glory of the sciences up to the 1970s. Their 

epistemologies are different—think of the notion of scenario, which is so central in those fields; 

they tie together human action and nature, they build a knowledge that is at the same time de-

scriptive and prescriptive, and they make it, from inside I would say, a tool of government.

	 The social implications that are locked away in biotechnologies, simulations, and Earth sci-

ences are greater than those of the preceding physics-based technologies. Just think of human 

cloning, which cannot fail to become a burning issue in the near future and is set to polarize so-

ciety to a far greater extent than the physical sciences ever did. They also require the use of less 

binary criteria, criteria that are more complex and difficult to manipulate than in the previous 

phase—take the notions of precaution and sustainability or the problems in performing 30-year 

evaluation forecasts of the effectiveness of climate change adaptation measures. 

	 The second aspect is the fact that science and technologies have been affected by the new 

moral and economic order that has emerged over the past few decades. Productive regulations 

have been transformed, and power in the economic sphere has generally shifted from indus-

trial managers to shareholders and financial actors. The geopolitical order, for its part, has partly 

shifted from a system regulated by nation-states in Westphalian equilibrium to global systems 

regulated in many different governance spaces by actors with varying degrees of democratic 

legitimacy: large corporations, the World Bank and the World Trade Organization, all manner of 

agencies, a plethora of nongovernmental organizations, and, of course, some major nation-states 

like China and the United States.37 

	 Through the emergence of these new global and/or environmental questions and forums, as 

well as the emergence of neoliberal forms of government using benchmarks to mold people and 

guide the action of stakeholders in a “pastoral tradition,”38 politics, as it had been defined since 

the emergence of mass democracies, has been redefined and, to a certain extent, marginalized.39 

Finally, the entire geopolitical ensemble appears to be in a constant flux with no obvious focal 

point and prone to all manner of upheaval. This situation is the very opposite of the predictability 

that prevailed during the Cold War: the status quo was looked on as permanent, as a guarantor 

of our continued survival. The upshot of these changes is an increasing feeling of uncertainty 

and all-pervasive risk, a situation on which Ulrich Beck based his celebrated book.40 This shift 

to a regime that can be qualified as global and dominated by financial actors has finally been 
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accompanied by increasingly fraught labor and social relations, which also account for the over-

riding impression of uncertainty among the most distressed sections of society. 

	 It has also been accompanied by a transformation of what it means to produce knowledge, 

particularly in universities. First, a whole host of new interests in research now exist: venture 

capital and pension funds, the Nasdaq capital market, start-ups, and commercial lawyers have all 

become crucial, alongside central government and armed forces, which obviously continue to be 

of key importance. They all now combine to mold the forms that research takes and define what 

is studied and what is forgotten. Industrial research, on the other hand, has broken free from 

the territorial constraints that continue to affect universities and populations, and decisions as to 

where research is to be located are now taken at global level in light of current opportunities. 

	 In large corporations, there have also been major changes in the nature of innovation work. 

The design of generic products and product lines have now replaced R & D as the cornerstone 

of innovation in a whole host of domains, and research can now be outsourced, to use the current 

jargon. Intellectual property rules were overhauled in the 1980s under the impetus of the U.S. 

government and the U.S. Patent Office (originally around GMO products), and this change has 

led to a greater compartmentalization of knowledge and to new forms of monopoly and a litiga-

tion culture. So a new political and moral economy of knowledge has taken root at the heart of 

what is often referred to by the catchall, ectoplasmic terms “knowledge-based economy.”41

	 Last, individuals themselves and social bodies have experienced root-and-branch changes. 

These are apparent in shifting subjectivities, in attitudes and lifestyles, and in the relationship 

to authority, notably institutional and scientific authority, including that of science museums. 

We could say that our societies have become flatter, more diverse, less structured, guided by a 

multiplicity of principles and values. We could say that personal trajectories and references are 

more varied, that there is a wider range of possibilities for self-definition and self-realization and, 

ultimately, a decline in the power of traditional institutions such as the school or the family.42 

Contemporary Technoscience, 
Expertise, and Multiplicity of 
Social Spaces for Assessment
As regards attitudes to science and technology, these developments have given rise to changes in 

social certitudes. Although it was never complete in the first place, belief in beneficial, control

lable technoscientific progress has frittered away. Chronologically, the key turning point was the 

radical opening up of the nuclear debate in the United States during the 1960s and the fact that 

arguments between experts about the intrinsic complications of the technology entered the pub-

lic domain.43 The decisions of experts working behind closed doors are now being contested with 

increasing frequency. These developments have been accelerated by the pace of technological 

change (from GMOs to tailored biotechnical products), global health and environmental crises 
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(with higher media exposure), and the opacity of the new governance regime and its dissolution 

of responsibilities.

	 Alternative forms for producing knowledge and debating have thus multiplied and possibly 

mutated around technoindustrial development. The issues are less considered local affairs, for 

example, contrary to what dominated in the nineteenth century vis-à-vis chemical pollution.44 

Environmental questions are now considered a battle for the survival of humankind and the 

planet, a global combat. The environment is now of concern to all. It has become a separate issue 

that is no longer derived from the social question and has even supplanted the latter in terms of 

values and preoccupations. If we start with the simple contention that social and political debates 

are structured by three questions—economic development, social justice, and environment—we 

may say that the relative weight of the last two has changed in inverse proportions between 1860–

1960 and 1960–2010 and that this shift in priorities is a salient feature of the current situation.

	 Militant activism in relation to technoscientific development is now largely in the hands 

of NGOs and patient associations. Since the 1960s, these groups have begun to intervene more 

directly to question the appropriateness of scientific or political choices. Many associations have 

their own research institutes that openly challenge official certifications.45 They undertake cam-

paigns to promote measures and controls themselves. Far more legal proceedings are also being 

instigated than before (even if they have always existed), and all manner of “consensus confer-

ences” are organized, usually top-down forums that aim to organize and avert the population.46 

	 Such behaviors are not simply due to the negative impacts of technoindustrial practices. 

They also arise from the emergence of new tools and new ways of producing and disseminating 

knowledge. Just as the heightened sense of liberty in the late eighteenth century had to do with 

the rapid increase in the number of printed works in circulation,47 the exponential increase in 

Internet use appears to be of capital importance today. Particularly for younger people, the web 

promotes alternative forms of learning, working, and expressing oneself. It gives rise to other 

ways of defining relevant information and promotes alternative practices for assessing it. Because 

it is radically polycentric, it easily short-circuits hierarchical channels and undermines the au-

thority of scientific spaces, including, of course, science and technology museums.48

	 In most scientific and technological circles, the tendency remains to not really take these 

realities on board and treat them as anomalies to be remedied by further doses of sciences. The 

reaction is similar among most European politicians and in economic milieux where the actors 

are petrified by the GMO affair, which they see as an unfounded mass outbreak of technophobia 

that needs to be dealt with through more effective communication. 

	 This simplification is, of course, a failure to come to grips with new challenges. The idea that 

this phenomenon is a fleeting one has long been disproven. It also seems that it is less science or 

knowledge per se that is being singled out than regulations, the way crises and responsibility are 

handled. It is oversimplistic to see this as a new irrationalism. Indeed, what is at issue is precisely 

the contrary, the very success of the industrial technosciences and the passions they arouse. And 

in this respect, most reactions are eminently reasonable.49
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	 More precisely, these passions and attitudes are often double-edged. On the one hand, 

when collective welfare is at stake, greater caution is being urged, for example, around public 

health (the Vioxx scandal), the environment (nuclear waste management), religious convictions 

or ethics (cloning, stem cell research), and ownership (freeware). But there is also a greater belief 

in progress and eager adoption of technoscientific offerings when individual users themselves 

retain control over the inherent risk involved: think of self-enhancement, for example.

	 In concluding this section, I think it appropriate to stress one final point: the historically ob-

vious fact that (pre)caution mainly stemmed from the refusals of the negative (and initially often 

unnoticed) side effects of progress. Contrary to what industrial managers, company engineers, 

politicians, and risk experts would have us believe, it was mainly the post hoc contestation that 

drove safety committees, government departments, manufacturers, and courts to adopt stricter 

standards. This resistance started 200 years ago, and it has been the decisive factor in making 

technological and industrial behavior safer in environmental and health terms.50 It is thus crucial 

to listen to society when it expresses its concerns: because it reflects a myriad of preoccupations 

and values, the social body, in all its multiplicity, is the most effective whistleblower.

A Few Pointers for Reflection and Action
So what is the best way forward? I did promise to develop a few kinds of normative ideas. For a 

start, I guess we first have to recognize that the world is an inherently complicated and contra-

dictory place in terms of interests, ideals, and preoccupations and that there can be no simple 

prescription. Any belief in the happy marriage between reason, science, and society has evapo-

rated—if it ever existed—and that should be at the heart of any of our thinking. 

	 We probably also need to recognize the nontransient nature of the three major historical 

sources of friction I evoked: between market-based innovation and dynamics and the desire to 

deal with problems through dialogue and democratic means, between technoindustrial progress 

and the negative or uncertain social and environmental impacts, and between self-realization and 

individualism and the necessity for common legislation. To paraphrase Paul Ricoeur, democracy 

is not a political regime free from contradiction or conflict but one in which solutions are open 

and partly negotiable. Conflict in democracies is neither an accident nor a misfortune; it is an 

expression of the scientifically nondecidable aspect of the public good. Even though it sounds 

laudable, the idea of global consensual governance cannot but remain a myth. Political discussion 

is, out of necessity, without logical conclusion, says Ricoeur, although it is not without decision.51

	 This complexity should not hold us back even if it should make us quite prudent. I would 

like to put four proposals forward. First, we should recognize the reality and the vital necessity 

in normative terms of the variety of human values, the variety of the ways in which we make 

sense of the world, and also the variety and complementarity of forms of knowledge. I propose 

that, in every context, notably in science museums, we actively show this radical diversity, this 

biodiversity of knowledge and values, that we fight for an acknowledgement that dissensus and 

diverging opinions are normal. To be sure, consensus-building initiatives cannot be negative, but 
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diversity and differences, not unanimity, lie at the heart of scientific and political life. Diversity 

also facilitates more effective problem detection and helps provide a better fit with unknown sit-

uations. The sciences will undoubtedly continue to constitute the inner core of knowledge, and 

technological innovation will undoubtedly continue to be a central resource for the world. But 

they (we) will have to (re)learn modesty in a way that they (we) have never had to before and to 

be wary of the hubris that frequently characterizes their (our) relationship to novelty—something 

scientists, people in the humanities, and curators should constantly keep in mind.

	 This first suggestion leads on to a second: realizing that there are always many things that 

we, and science in particular, do not know.52 This involves learning not to cut ourselves off and 

not to be over confident in our own conclusions, a common fault among scientific intellectuals. 

It involves carefully examining the blind spots in the technologies, theories, and artifacts that we 

advocate or display, blind spots more often highlighted by those who bear the brunt of the down-

side of progress, by those who refuse certain forms of development or dream of other futures and 

for whom we should open means of expression.53 

	 However, we are not here simply talking about some ecumenical love-in, which is pre-

cisely why things are complicated. We need to bear in mind that power relationships and vested 

interests cannot but interfere with, and instrumentalize, any dialogue. Indeed, this has been 

theorized since the late 1980s by consulting firms offering their services to corporations and 

political parties.54 We also know that the quality of arguments matters, even if nobody occupies 

God’s position and could decide what is valid and what should be simply discarded. No doubt 

a big-tent approach to debating, exhibiting, and deliberating is a positive move. It hangs on a 

thread, however; it needs to be constantly nurtured given its vulnerability in the face of ordinary 

power relationships and the unequal strength of arguments, and there is no general recipe to 

succeed when presenting or analyzing these situations. As such, revitalizing the forms of counter 

democracy that challenge the doxa and monitor failings is a sound policy. And it is normal to 

insist that post hoc surveillance and whistleblowing are just as vital as the definition of proper 

decision-making processes in instituting the political order that our hi-tech and liberal societies 

need. Trying to open decision-making processes to have them include as many people as possible 

is essential. Because that process will never be perfect, however, it is just as important to have in 

parallel independent, multiple (and post hoc) forms of assessment by as many people as possible 

and to ensure that public visibility is given to these dissident findings.

	 Therefore, beyond the sometimes facile calls for “good governance” for one and all to safe-

guard the common good, we need to (re)learn choice, or, more precisely, the necessity and dif-

ficulty of choice.55 We have to explicitly accept that deciding cannot but be painful because we 

are rarely in win-win situations and because choosing means having to allocate the impending 

negative consequences to certain people and not to others. For example, a successful adaptation 

to climate change cannot have no cost or fail to impact our lifestyle,56 unless we do not really take 

the question seriously and, carrying progress to its logical conclusion, behave as if science will 

always come up with a solution that will absolve us of any duty to adapt.
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	 In sum, we need to (re)learn how to keep a dialogue going and to realize that choices are 

often painful, that decisions are never perfect, that they must be checked and commented upon 

ex post facto by as many people as possible, and we also need to be inventive in detecting forth-

coming problems. It is not enough to simply enumerate procedural arrangements to be deployed, 

something science and technology studies scholars have stressed perhaps too much: we also need 

to pinpoint the weighty, all-important issues and come up with matching, imaginative, substantial 

solutions. Let me evoke two examples to illustrate what I have in mind. 

	 First, what kind of relationship do we have, or would we like to have, with illness, death, 

and our dream of eternal youth and immortality as it is crystal clear that healthcare expenditure is 

increasing faster than our revenues, that it is simply unsustainable in the short to medium term?57 

Second, what is our collective vision of global commons (air, water, biodiversity, or knowledge), 

and how can we (re)qualify these commodities from a legal perspective as it is patently obvious 

that many of our current problems cannot be solved without including these global commons in 

the equation? There is, on these questions, no shortage of historical examples from which to draw 

in the quest to (re)learn more effective and collective modus vivendi.

*  *  *

I will stop there in full awareness of the brevity of my remarks, as well as the simplicity and levity 

of some of my arguments. I simply hope to have engaged the reader’s attention at least part of the 

time and to have partially convinced him or her that many of these questions are still wide open.
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CHAPTER 2

A Tape Measure and a “T” Stop
Or, Why Museums of Science and Technology 
Should Collect More Contemporary Artifacts

A Tape Measure
In January 2011, the MIT Museum unveiled the 

largest single exhibition that it has ever attempted. 

Spread across three sites (the MIT Museum itself, 

the Compton Gallery located in Massachusetts In-

stitute of Technology’s [MIT] main buildings, and 

the Maihaugen Gallery in the Institute’s Archives 

and Special Collections) and occupying a total of 

around 7,500 square feet, the MIT 150 Exhibition 

brought together 150 artifacts chosen for their col-

lective ability to evoke the spirit of the Massachu-

setts Institute of Technology on the occasion of its 

150th anniversary.

	 This was no ordinary array of artifacts. For one thing, it comprised an almost bewildering 

variety of materials, from archival documents recording the founding of the institute, through 

all manner of scientific, technological, engineering, art, and design objects, to a number of posi-

tively quirky items, including the remains of an old piano, dropped from the roof of MIT’s Baker 

House five-story dormitory on “drop day” (get it?), the last day of the 2010 spring semester 

on which students were entitled to drop a class. For another, it was the result of an 18-month 

crowdsourcing experiment, in which members of the extended MIT community were invited to 

nominate artifacts for inclusion in the exhibition. With nearly 900 nominations for just 150 slots, 

a considerable amount of curatorial discretion was inevitably involved in the final selection; 

John Durant
Director

MIT Museum 
Cambridge, Massachusetts
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nevertheless, to a significant degree the exhibition was the product of collective intelligence 

(for example, the Baker House Piano Drop was the clear winner in an online popularity contest 

among all the nominated artifacts, and after that there was never any doubt that it would be 

included in the show).

	 The MIT 150 Exhibition was a three-dimensional institutional autobiography. From the 

outset, the aim was to capture the culture of the place, not through a mere chronology of 

events, but through an assembly of what exhibition curator Debbie Douglas, following the 

lead of our MIT colleague Sherry Turkle, chose to call “evocative objects.”1 And evocative they 

certainly were. For although the show was presented as an array of artifacts, it felt like nothing 

quite so much as a collection of stories about every imaginable aspect of MIT life, past and 

present. Some of these stories were personal vignettes, whereas others were nationally or in-

ternationally significant events, but what they all had in common was that they were anchored 

in—I feel compelled to say, they were animated by—a collection of inanimate, unspeaking 

objects.

	 Take, for example, what was surely the humblest of all the artifacts to find its way into the 

exhibition: a perfectly ordinary tape measure, of the sort that can be found in millions of homes 

across America (Figure 1). What distinguished this artefact (which is now in the collections 

of the MIT Museum) was certainly not its nature, which was thoroughly prosaic, but rather 

its provenance. For this particular tape measure was purchased by biology professor Nancy 

1. 
Nancy Hopkins’s tape measure. Michael Cardinali, photographer, courtesy MIT Museum.
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Hopkins in the late 1990s to help her substantiate a charge of gender discrimination in the in-

stitute. In a place famed for its reliance on quantitative evidence, where even the buildings are 

numbered, Hopkins’s straightforward documentation of the amounts of floor space allocated for 

research by male and female faculty members had an immediate impact. Following the release 

of an MIT faculty study chaired by Hopkins herself, MIT president Charles Vest admitted pub-

licly that the institute was essentially guilty as charged; and this bold admission triggered real 

changes at MIT and in American research universities more broadly.2 At a memorial service for 

Vest in March 2014, his administration’s engagement with the issue of gender discrimination 

was cited repeatedly as one among a handful of signature accomplishments of his 14-year tenure 

as president of MIT.

	 If a tape measure can be an evocative object, then anything can be an evocative object. We 

know this from personal experience, of course, for example, when we look back on objects that 

had an unusual impact on us or when we hang on to personal possessions that we could well do 

without because of their “sentimental value,” and we know it, too, from more overtly public ac-

tions, such as when communities decide to create time capsules as ways of communicating with 

the future.3 What objects will make the best emblems and tokens of a particular time and place, 

as judged by generations yet to be born? The answer, it seems, is anything and everything from a 

bus ticket and timetable to a department store catalog and a spool of thread. Time capsules have 

been dubbed “dormant museums,” and the difficulties associated with deciding what to put in 

them provide clues to the challenges faced by real museums and professional curators over the 

question, what to collect?4

	 Criteria for the acquisition of new artifacts into museum collections are notoriously tricky to 

define in terms other than the seemingly platitudinous. My own museum, for example, provides 

the following by way of first-order acquisition criteria:

Relevance: the object must support the Museum’s mission and fit within its stated collect-

ing goals. 

Use: the object must have the capacity for use in exhibitions and/or for research and schol-

arly purposes.

Condition: the object must be in reasonable condition and must not require significant ex-

pense for treatment in order to make it relevant or useful unless such funds are provided.5

In fairness to my colleagues, I should acknowledge that the collections document from which 

I’ve just quoted continues with more specific statements about key collecting areas, but in truth, 

many collecting museums have formal acquisition policies that are easy to caricature as elabora-

tions on the basic maxim that “we want what we want (and can afford).” This does not necessarily 

imply that such museums don’t know their business; on the contrary, it may mean only that in 

practice they need to rely more on connoisseurship and professional curatorial judgment than on 

general criteria and formal rules.



A Tape Measure and a “T” Stop� 27

	 This reliance on connoisseurship and judgment is what we would expect if, in part at 

least, objects are valued by museums for their capacity to evoke particular times, places, and 

circumstances, if, indeed, objects are sought after as carriers and containers of significant sto-

ries. A tape measure is a tape measure, after all, unless and until it is judged to be a token of 

important debates about the role of women in science in the late twentieth century. Equally, a 

broken piano is a broken piano, unless and until it is interpreted as the physical embodiment 

of a longstanding culture of “hacking” among students at MIT.6 An object in a museum is never 

a purely objective or natural thing; rather, it is always a cultural thing—a thing by virtue of 

its being embedded in particular worlds of personal, artistic, historical, scientific, etc., experi-

ence—and such embedding is not obviously or easily reducible to the formulaic application of 

general principles.7 

	 This point applies differently to different types of museum objects: to art objects of all sorts, 

which have been made precisely in order to be sensed and appreciated; to historical artifacts, 

which may have been made with any number of other purposes in mind; and even to “natural” 

or “found” objects, such as the rocks, fossils, plants, and animals that make up the bulk of the 

collections in museums of natural history worldwide. One way or another, however, the point 

always applies. Inevitably, the very acts of acquiring, naming, classifying, describing, arranging, 

and displaying collected objects serve to invest these objects with meaning by making them dra-

matis personae in stories of presumed significance. Such investment is not something that can be 

avoided; rather, it is something that should be embraced and exploited—in the best sense of the 

word—for the benefit of researchers, students, and museum visitors.

	 The evocative nature of objects is a major—I am inclined to say, it is a principal—reason 

why museums of science and technology should collect more contemporary scientific artifacts. 

With the help of such artifacts, our museums will be enabled, now and into the future, to tell an 

indefinitely large number of meaningful stories about the place of science and technology in late 

twentieth- and early twenty-first-century society. In a sense, they will be able to do for the larger 

culture what the MIT 150 Exhibition did so convincingly for a single research institute. If, on 

the other hand, museums of science and technology fail to live up to their professional responsi-

bilities to collect contemporary artifacts, then I fear that they will be obliged, now and into the 

future, to tell a poorer, more restricted range of stories about the place of science and technology 

in our society.

	 In an important sense, the difference between these two sets of possible stories, those that 

are enabled and enlivened by evocative objects and those that are not, approximates to the dif-

ference between what the anthropologist Clifford Geertz famously termed “thick description” 

and “thin description,” where by thick description he meant richly interpretive description (de-

scription, as it were, “from the inside”) and by thin description he meant merely factual descrip-

tion (description, so to speak, “from the outside”).8 Museum visitors deserve the opportunity to 

encounter displays that offer thick descriptions of science and technology, descriptions that offer 
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genuine insights into the character of scientific and technological developments; and in the cre-

ation of such displays, contemporary artifacts have a great deal to offer. 

	 This, at least, will be the argument of this chapter. I shall conduct this argument by consid-

ering, first, the changing role of objects in American museums over the course of the past 150 

years. This consideration will lead to further reflection on what it is about artifacts that makes 

them so revealing of the character of scientific research and technological innovation. Then I 

shall describe a recent example from the work of my own museum that illustrates some of the 

ways in which artifacts can enrich our understanding of recent and contemporary science and 

technology.

“Do Museums Still Need Objects?”
Museum historian Steven Conn has argued that the first major flowering of American museums 

in the late nineteenth century coincided with the rise of what he terms an “object-based episte-

mology,” according to which it was possible both to create and to convey knowledge through the 

proper collection, classification, and arrangement of objects. In the period immediately after the 

American Civil War, the endeavors of a new generation of leaders were inspired by an ambitious 

vision of museums as object-based institutions of research and teaching. Although the serried 

ranks of glass cabinets full of carefully classified artifacts that these leaders assembled came to be 

viewed much later as the fusty, dusty heirlooms of a hidebound past, Conn helps us to understand 

that they were originally intended to enable systematic learning up to the very highest levels. 

Indeed, for a time the nation’s great museums vied with the emerging research universities for 

the title of America’s premier institutions of higher education.9

	 Of course, it was not only the rise of the research universities that undermined the credi-

bility of object-based epistemology. For around the turn of the twentieth century it gradually be-

came apparent that even the most complete and carefully organized array of artifacts can afford 

knowledge and understanding only of certain, rather limited kinds. Such an array may, for ex-

ample, provide rather effectively for taxonomic and comparative anatomical knowledge, but it is 

singularly ill suited to many other kinds of understanding. In a more recent work, provocatively 

entitled Do Museums Still Need Objects?, Conn reflects on the fact that through the course of 

the twentieth century, “the place of objects in museums has shrunk as people have lost faith in 

the ability of objects alone to tell stories and convey knowledge.”10 The collapse of object-based 

epistemology after 1900 was influenced by a move on the part of core disciplines (e.g., biology) 

away from a preoccupation with objects (organisms) and their proper classification (taxonomy) 

and toward a closer engagement with underlying (physiological, cellular, and molecular) pro-

cesses and with theory. These were subjects with which cased artifacts alone could scarcely be 

expected to deal effectively, but for which the research universities were increasingly much 

better equipped.

	 These transformations left museums looking for new roles in the twentieth century. Gen-

erally speaking, museums of art and history became cultural institutions devoted to interpreting 
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the multiple worlds of human creativity and meaning making to prevailingly adult audiences, 

but museums of science and technology took a very different path. In one particularly tell-

ing chapter, entitled “Where Have All the Grown-ups Gone?,” Conn describes how American 

museums of science and technology steadily transformed themselves over the course of the 

twentieth century into places focused squarely on the educational needs of children.11 The new 

interpretive techniques they developed, including push-button demonstrations, hands-on inter-

active exhibits, and multimedia displays, focused increasingly on underlying scientific princi-

ples and everyday technological applications, and they had less and less use for original artifacts. 

Seized with their role as educators of American youth, few new “science museums” created 

after World War II took seriously any kind of responsibility for the collection and conservation 

of original artifacts; indeed, some older collecting institutions largely abandoned their curatorial 

missions.12

	 One important, although unintended, consequence of this flight from original artifacts as the 

educational raison d’être of science and technology museums has been the failure of the museum 

world as a whole over the entire postwar period to collect an adequate record of recent and con-

temporary science and technology.13 To be sure, a relatively small number of major institutions 

(e.g., the Deutsches Museum, Munich; the National Museum of American History, Washington, 

D.C.; and the Science Museum, London) have continued to make important acquisitions of recent 

material, but even they would be among the first to acknowledge that taken in the round, the col-

lective efforts of museums have failed to keep pace with the breathtaking expansion of research and 

innovation in many fields since 1945. Although one or two areas—space science and technology, for 

example, and perhaps computing—have been well collected over recent decades, many others, in-

cluding many areas of basic science and pretty much the entire burgeoning field of the life sciences 

and technologies, have not. In part, to be sure, this is a result of the sheer scale of scientific and 

technological research in the postwar period, which dwarfs the museum sector and is apt to daunt 

even the most enthusiastic curator, but in part, too, it is a result of a shift in focus among museums 

of science and technology, away from artifacts and toward newer, thematic displays.

	 There are many reasons for regretting this collective failure to collect on the part of the 

world’s museums of science and technology. At the most basic level, we are not archiving ade-

quately the material culture of recent and contemporary science and technology, and this matters. 

There is an elementary fascination with understanding how Galileo Galilei managed to observe 

new objects in the heavens with the help of his telescope in the early seventeenth century or how 

Michael Faraday advanced the study of electricity and magnetism in his laboratory at the Royal 

Institution of London in the early nineteenth century or how Francis Crick and James Watson 

went about constructing their revolutionary model of DNA at the Cavendish Laboratory in Cam-

bridge in the mid-twentieth century. None of these things can be properly understood without 

some appreciation of what these researchers actually did; and in each case, what they actually 

did can only be properly understood by reference to the working materials, the apparatus, instru-

ments, models, etc., with which they did it. Fortunately, in each of these instances we have access 
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to at least some of the original materials involved, but at the present rate of museum collecting, 

this is unlikely to be the case in years to come with respect to many of the most important recent 

and contemporary scientific discoveries.

Objects and the Problem 
of Tacit Knowledge
At this point, it seems worth stepping back from the details of changing museum practices to 

consider an important general principle that has been multiply documented by recent work in 

the field of science and technology studies. Simply put, the principle is this: neither scientific 

discoveries nor technological innovations are fully and completely captured by the primary writ-

ten record of research alone. On the contrary, even the most thoroughly written peer-reviewed 

articles fail to provide a full understanding of how the relevant research was actually undertaken 

and in what ways the reported results were actually achieved. This failure is not because of idle-

ness, stupidity, or duplicity on the part of researchers but because by its very nature research is 

a form of professional practice in which at least part of what is happening is based on tacit rather 

than explicit knowledge.

	 The concept of tacit knowledge was introduced many years ago by scientist-turned-

philosopher Michael Polanyi. In one of his most influential examples, Polanyi wrote the following:

If I know how to ride a bicycle . . . this does not mean that I can tell how I manage to keep 

my balance on a bicycle. . . . I may not have the slightest idea of how I do this, or even an 

entirely wrong or grossly imperfect idea of it, and yet go on cycling . . . merrily. Nor can it 

be said that I know how to bicycle . . . and yet do not know how to coordinate the complex 

pattern of muscular acts by which I do my cycling. . . . I both know how to carry out (this 

performance) as a whole and also know how to carry out the elementary acts which consti-

tute (it), although I cannot tell what these acts are.14

In one sense, Polanyi’s idea is so obvious that it scarcely seems to require critical reflection. All of 

us know more than we can tell about virtually everything we do, from how we tie our shoelaces 

(always supposing that we have any) in the mornings, through how we get to our places of work by 

public or private transport, to how we negotiate tricky meetings in the workplace and so on and on 

through the course of our daily lives. For the most part, we can afford to neglect this tacit knowl-

edge: shoe tying can be taught (with some difficulty, as it turns out) to children, although mostly by 

“show,” not “tell”; and for much else, we rely on everyday cultural learning, mentoring, imitation, 

and all the rest, to help ourselves acquire the myriad of skills that we need in order to survive. Most 

of these life skills we scarcely bother even to bring into consciousness, for where tacit knowledge is 

pervasive and (relatively) easily acquired, there is really no need to think about it.

	 In the case of science and technology, however, the situation is very different. By its na-

ture, scientific knowledge is secured by means of a set of highly specific, often rather esoteric, 
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performances and procedures. In ways that formal science teaching frequently obscures (or at 

least neglects), science has always been and remains based on forms of extremely specialized 

artisanal practice, and artisanal practice is routinely shot through with tacit knowledge (if you 

doubt this, just try imagining how easy it is to become a joiner, a potter, or a violinist by paying 

attention to explicit instructions alone). This is why the only sure way to become a scientist is to 

keep close company with other more experienced scientists, taking guidance from them on what 

to do and when and how to do it, at least until one has acquired a minimal level of artisanal skill 

of one’s own.

	 Not only is practice within a community of more experienced practitioners normally essen-

tial to becoming a scientist, but keeping one’s hand in is normally essential to maintaining one’s 

ability to continue doing experimental science. The reason is, not least, because the artisanal 

skill base of any area of active science tends to evolve rather quickly as new technologies and 

techniques come on stream. Many laboratory heads will acknowledge privately that they them-

selves can no longer actually perform the benchwork that graduate students undertake every day 

under their supervision because their own skill base—tacit knowledge and all—has long since 

been overtaken by new developments “on the ground.” This acknowledgment doesn’t necessarily 

mean that such leaders are ill equipped to direct research; it simply means that division of labor 

has occurred to the point where only some people within a well-functioning research team can 

perform particular tasks.

	 The tacit nature of much scientific knowledge points strongly to the importance of the ma-

terial culture of science—of concrete field and laboratory practices and procedures, including 

the observational and experimental equipment involved, and the protocols on which the use of 

this equipment depend—for an adequate understanding of how scientific research is actually 

done.15 This, in turn, argues for the importance that attaches to the role of museums as collectors 

and conservators of recent and contemporary scientific and technological artifacts. Without such 

evocative objects, we risk being confined to a largely text-based and thus (in the worst sense) 

overly intellectualized view of the scientific enterprise, but with them, we have more of the 

resources we require in order to be able to tell meaningful stories about the nature and place of 

science and technology in late twentieth- and twenty-first-century society.

	 In the next section, I offer by way of illustration of this point a vignette from an area of con-

tinuing work in my own museum.

A “T” Stop
Picture the scene:

We’re somewhere in the Whitehead Institute/MIT Center for Genome Research, sometime 

during the second half of 1999. A lot of people, many of them younger but one or two older 

and more senior looking, are standing around some very complicated looking machinery. 

They’re in a state of nervous expectation, worrying about the difficulties involved in getting 
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the machinery to work. The voice-over (which belongs to the well-known American science 

broadcaster Robert Krulwich) informs us that this research group’s main competitor, a pri-

vate company called Celera Genomics, has recently announced its intention to complete 

a first sequence of the human genome in just two years, way faster than anyone up to this 

point has ever contemplated. This announcement, we hear, represents a particular crisis 

for one of the people present, director of the National Human Genome Research Institute 

and acknowledged head of the Human Genome Project Francis Collins, who has decided to 

speed up his own massively collaborative public effort, indeed, to cut no less than five years 

off the original schedule for the project, by mandating the purchase of a whole lot of new 

equipment. 

This scene is drawn from a two-hour Nova special documentary called “Cracking the Code of 

Life,” which was first broadcast by the American Public Broadcasting Service (PBS) on 17 April 

2001.16 The documentary tells the extraordinary story of the race to complete the sequencing of 

the human genome, which began in the late 1980s and culminated (in one sense, anyway) in a 

joint press conference in the White House on 26 June 2000 at which U.S. President Bill Clinton 

and U.K. Prime Minister Tony Blair (who joined by satellite) congratulated both Francis Collins 

and Celera Genomics president Craig Venter on their joint completion of a working draft of the 

sequence of the human genome. What was presented to the world’s press as an honorable and am-

icable tie deceived no one who had had the slightest involvement with the field over the preceding 

decade, for the race to complete the sequencing of the human genome had been fast, furious, and 

at times acrimonious; it was a race not only for the prize of being first but also over the disputed 

question of who should have access to and ownership of human genome sequence data.17

	 “Cracking the Code of Life” portrays rather vividly what was perhaps the single most crit-

ical phase of the Human Genome Project, and it portrays it, more than anything else, as a battle 

with, or even perhaps between, machines—not just any machines, of course, but a succession of 

new DNA mapping and sequencing machines. To give some flavor of the atmosphere conveyed 

by the documentary, here is an extended extract from the published transcript:18 

ROBERT KRULWICH: In the fall of 1999, representatives from the five major labs come 

to check out Eric Lander’s operation. . . . If they want to finish the genome before Craig 

Venter, these folks have to figure out how to outfit their labs with a lot of new and fancy 

and unfamiliar equipment. And they’ve got to do it fast.

LAUREN LINTON: So we’ll have to runs [sic] some sort of a conduit.

ROBERT KRULWICH: At MIT a different crate is arriving almost daily.

MIT STAFF RESEARCHER ONE: It’s like Christmas, everyone unwraps something.

ROBERT KRULWICH: Just like a bad Christmas present, assembly is required. And the 

instructions are of course not always clear.

MIT STAFF RESEARCHER TWO: Oh, no, the magnet plates stick to each other?

MIT STAFF RESEARCHER THREE: . . .plus or minus three feet.
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ERIC LANDER: Since one’s on the cutting edge...I guess they always call it “the bleeding 

edge,” right? Nothing really is working as you expect. All the stuff we’re doing will be 

working perfectly as soon as we’re ready to junk it.

ROBERT KRULWICH: The MIT crew is particularly excited about their brand new three-

hundred-thousand-dollar state-of-the-art DNA purifying machine.

MIT STAFF RESEARCHER FOUR: Why don’t you turn it on.

MIT STAFF RESEARCHER THREE: All right, maiden voyage. It didn’t ask me for a pass-

word. That’s good.

MIT STAFF RESEARCHER FOUR: Are you supposed to get the yellow light right away?

ROBERT KRULWICH: I don’t think the blinking light is a good sign.

ERIC LANDER: It’s sort of like flying a very large plane and repairing it while you’re flying. 

You want to figure out what went wrong. And you also realize that you’re spending, oh, 

tens of thousands of dollars an hour. So you feel under a little pressure to sort of work 

this out as quickly as you can.

ROBERT KRULWICH: So he calls the customer service line. And of course he’s put on 

hold. So he waits. And he waits. And he waits. Anyway, it turns out that the three-

hundred-thousand-dollar machine does have one tiny little valve that’s broken, and so it 

doesn’t work.

….

FRANCIS COLLINS: When you try to ramp something up, anything that’s the slightest bit 

kludgy suddenly becomes a major bottleneck.

Here, we are being given glimpses of a group of researchers who are desperately locked into a 

high-profile race for scientific priority and whose strategy for success is to bank on a series of new 

mapping and sequencing devices over which, frankly, they do not have full control. As various 

new machines arrive, they’re unpacked, installed, and . . . there are problems. Team members 

desperately try to figure out what’s wrong; sometimes they get help from the manufacturers, and 

sometimes they don’t. Machines are fixed and fudged in any way possible, but there are constant 

risks, especially with anything that’s “kludgy.” What’s happening, actually, is that researchers 

are customizing laboratory equipment on the fly in order to make it work not just well but well 

enough to beat the competition (in this case, Celera Genomics), which probably means better 

than the manufacturers originally envisaged. 

	 Now, of course, this information is all courtesy of a PBS Nova special, which is to say that it’s 

designed for prime-time American TV, so in the end this particular story is told as a heroic folk 

epic in the time-honored tradition. There’s an initial state (let’s sequence the human genome, ev-

eryone), which is followed by an unwelcome challenge (we’re going to blow you out of the water 

by completing the task in less than half the time, with private money, for private profit), which 

precipitates a crisis (“these folks have to figure out how to outfit their labs with a lot of new and 

fancy and unfamiliar equipment”), which is followed by eventual triumph (we made history, and 
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we got invited to the White House). This familiar frame is neither particularly surprising nor, for 

present purposes, particularly interesting. What is of greater interest is an alternative, more fine-

grained frame: the frame of scientists and their engineering coworkers striving mightily among, 

against, and with the help of machines.

	 From one point of view, the Human Genome Project was a technological challenge whose 

eventual solution lay in more than a decade of dizzyingly fast innovation in mapping and se-

quencing technologies. Among other things, this challenge drove an iterative process between 

equipment manufacturers and genomics laboratories, in the course of which each contributed 

materially to the process of technological innovation. This contribution was never clearer to me 

than when, in the fall of 2012, I joined my MIT Museum curatorial colleague Debbie Douglas 

and Chad Nusbaum, codirector of the Genome Sequencing and Analysis program at the Broad 

Institute of Harvard and MIT, on a visit to a storage facility in Hingham, south of Boston. There, 

we viewed a large number of historic mapping and sequencing machines that had passed through 

the Broad Institute (and its immediate predecessor, the Whitehead Institute/MIT Center for 

Genomic Research) and were now slated for—well, what exactly? Although all of these machines 

had last seen active service within the past 15 years, all were now entirely obsolete, and although 

all were in storage, the largest among them, none other than the “brand new three-hundred-

thousand-dollar state-of-the-art DNA purifying machine” featured in the 2001 Nova documen-

tary, had been moved to one side of the storage warehouse, near the door, awaiting collection for 

final disposal (i.e., the dumpster).

	 That day, it was agreed that 10 machines from the Broad Institute’s storage facility should 

be formally acquired by the MIT Museum and transferred for safekeeping to the museum’s own 

off-site storage facility, just a couple of miles from MIT.19 There, today, sit several generations of 

successive mapping and sequencing devices. These devices are the very opposite of proverbial 

black (or gray) boxes. To be sure, they are all based around commercially manufactured products, 

but they are extensively open, and they show multiple signs of having been customized in various 

ways by their users. One assembly comprises a Beckman Multimek machine combined with two 

Perkin Elmer plate stackers (see note 19, items 6–8); another is a small commercial oven, of the 

sort customarily used for baking pizzas, which has been modified for use in DNA amplification 

(see note 19, item 5). On closer inspection, many of the machines appear to be nonstandard and, 

to use Francis Collins’s word, extremely “kludgy.”

	 Among these machines are two that appear to be sections (for reasons that will become ob-

vious, let’s call them stations) from the very large, production-line-like DNA purifying machine 

that Collins and his colleagues can be seen struggling with in that NOVA documentary (see note 

19, items 1 and 2). During our visit to the Broad Institute’s storage warehouse, Nusbaum told us 

that this machine was sufficiently large and error prone that several techniques had been adopted 

to make it easier to operate. For one thing, tall masts with traffic lights were set up as error de-

tectors. Whenever one of these masts went orange (or worse, red), the team knew where the next 

problem was located. Again, since time was of the essence, it was felt to be important to get to a 
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malfunctioning station as quickly as possible in order to try to fix the problem without delay. So it 

was decided to give each station a simple, easily memorable name, and what could be simpler or 

more memorable than the well-known sequence of subway stations along the Massachusetts Bay 

Transportation Authority (MBTA) system, or “T” system?

	 The T, the oldest subway system in America, covers the Greater Boston Metropolitan area 

with a number of different lines, each of which is named after a different color. Cambridge is 

served by the Red Line, which runs from Braintree and Mattapan south of Boston via Park Street 

in downtown Boston and on to several stops in Cambridge, including Kendall Square at MIT in 

east Cambridge and Alewife, the last stop, in west Cambridge. Given the location of the White-

head Institute/MIT Center for Genomic Research, just a few hundred yards from the Kendall T 

stop, it was perhaps natural that the team would choose the names of Red Line T stops by which 

to recognize the successive stations on their “brand new three-hundred-thousand-dollar state-of-

the-art DNA purifying machine.” And this, presumably, is why stuck to the side of one of these 

CCS Packard Sequencing Decks is the word “Park” while stuck to the other one is the even more 

evocative name “Alewife” (Figures 2 and 3). It must be presumed that were all the components of 

this sequential analyzer to be reassembled in the correct order, Alewife would be found to be the 

last and final station stop.

Conclusion
I have argued that there are several fundamental reasons why museums of science and technol-

ogy should collect more contemporary artifacts. First and foremost, objects are evocative: they 

are carriers of the cultures that create them and thus are capable of supporting and sustaining 

stories that serve to embed human endeavors (in this case, scientific and technological endeavors) 

firmly in their human, real-world contexts. Second, objects embody large amounts of tacit knowl-

edge; that is, they evoke many aspects of scientific and technological research that researchers 

may know but be unable and/or unwilling to tell.

	 The intensely competitive, multiply contingent, and relentlessly “kludgy” character of ge-

nomics research in the late 1990s and early 2000s is not apparent, even from the most careful 

perusal of the research papers and reports that were issued by the leading participants in the 

Human Genome Project. As we have seen, some of these characteristics emerged from the best 

media accounts of the project, such as the Nova special documentary that has been discussed, 

but such accounts are at best fleeting and evanescent (we may thank PBS for deciding to archive 

online past Nova specials all the way back to the turn of the millennium), and they are mostly 

driven by other, frequently shorter-term considerations than those that weigh with historians and 

cultural critics. At any rate, it would be a brave person who would rely on documentary sources 

even as worthy as those of PBS for their best understanding of the nature and place of science 

and technology in twenty-first-century society.

	 The genomics machines that were acquired by the MIT Museum as gifts from the Broad 

Institute in 2013 have yet to be thoroughly researched. Our partial collection needs to be 
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2. 
Overhead view of CCS Packard Sequencing Decks, with Alewife section to the left and Park to the right. Deborah Douglas, 
photographer, courtesy MIT Museum.
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complemented with additional acquisitions of other material reflective of the breathtaking pace 

of technical developments in this field through the 1990s and 2000s, and all need to be analyzed 

in the larger context of the recent history of genomic science and medicine. With the benefit of 

access to a more complete array of materials, as well as to many of the scientists and engineers 

who first developed and used them, it will surely be possible to gain deeper insights into the close 

interplay between equipment manufacturers and the research scientists, engineers, and other 

technical support staff who customized and used these machines to drive genomics forward with 

such speed, from the early days right up to the present. One thing only is certain: there will be 

rich stories to tell, hopefully in the form of displays and exhibitions, as well as articles and books.

	 Published papers and monographs, archival records and manuscripts (including laboratory 

notebooks, private correspondence, and email), personal interviews, and nonparticipant and par-

ticipant observational studies of laboratory researchers in real time, all of these are valuable 

sources for historians of scientific and technological culture. The modest aim of this chapter has 

been to make the case that the collection of recent and contemporary artifacts deserves a place on 

this list. Historians of science and technology should look to their museum colleagues not merely 

for what existing museum collections have to offer by way of research resources but also for what 

new materials might yet be made available through programs of active, targeted collecting.

3. 
Close-up of Alewife label. Deborah Douglas, photographer, courtesy MIT Museum.
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	 Let it be remembered, finally, that in this subject area, unlike some others in which muse-

ums take an active interest, artifacts that are not acquired into museum collections are apt to end 

their days not in the delicate, white-gloved hands of private collectors and their curators, but 

rather in the thick, rubber-gloved hands of waste disposal officers. In this as in other respects, 

the MIT Museum’s recent experience with the Whitehead Institute/MIT Center for Genome 

Research’s old, obsolete, but once upon a time and not so long ago “brand new three-hundred-

thousand-dollar state-of-the-art DNA purifying machine” is hopefully instructive.
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CHAPTER 3

History as Intellectual and Organizational 
Tool in Creating a Collections Rationale
The Smithsonian’s National Air and Space 
Museum’s Spaceflight Artifacts as Case Study

Introduction
The title of this paper may seem odd: Should it be 

remarkable that a prominent national museum with 

stewardship over a collection of artifacts spanning 

more than a century uses history as an intellectual 

tool in creating a collections rationale—that insti-

tutional template used to guide decisions on acqui-

sitions and deaccessions? This question, though, 

points at an interesting phenomenon. Even at 

the Smithsonian National Air and Space Mu-

seum (NASM), situated within an institution with 

a strong scholarly tradition, the use of academic 

thinking to conceptualize and manage a collection has been haphazard. In part, this reflected 

a curatorial culture that until the recent past, gave preference to the tacit expertise of an indi-

vidual curator rather than requiring him/her to make explicit scholarly justifications as a basis 

for shared decision-making on collections matters. It also reflected, as will be described more 

fully below, the complex cultural position of a national museum. Only in the early 1990s, as a 

response to overarching Smithsonian policy mandates, did the museum begin to create formal 

collections rationales.1 These initially were constituted primarily of taxonomies and lists: of the 

existing collection, of targets for acquisition, and of potential deaccessions. The next iteration, in 

2000, inaugurated a requirement to prepare a revision every five years; that version and the next 
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in 2005 incorporated a modest move away from taxonomic thinking toward using scholarly liter-

ature to inform judgments embedded in the rationales. A revision undertaken in 2010, though, 

reoriented this prior practice and required that an assessment of relevant scholarly literatures 

provide the intellectual structure for the rationale. This essay explores that exercise in creating 

an academically grounded rationale covering the spaceflight-related collection, situating it in the 

larger museum context.2 

Context
However, as the above suggests, such effort was not—and could not be—abstracted from the 

practical and political circumstances of providing stewardship of a collection. Rather, it was nec-

essarily embedded in the ecology of institutional life—in the history of the organization, in its 

relations with donors and other constituents, in the use of artifacts in exhibitions (in which their 

meaning might differ from that provided in the rationale), and in the availability of specific orga-

nizational resources, such as museum-quality storage space. It also reflected a quirk in the muse-

um’s professional organization, in which aviation and spaceflight were divided between distinct 

curatorial departments, each composed of Ph.D. historians, each with the latitude to define the 

meaning of a rationale for collecting in its own subject area. Thus, a variety of issues ran through 

and around the creation of the rationale, raising the question of how history as a domain of exper-

tise intersected with these other factors.

	 In this complex of relations, timing mattered, both as to curators’ conception of historical 

valuation and the broader institutional context. Intellectually, the rationale had to confront, at 

least in outline fashion, a shift in the political and cultural economy of the creation of space arti-

facts. The great bulk of the museum’s spaceflight collection documented the post–World War II 

period, with a heavy emphasis on the Cold War and on artifacts created mostly through state 

initiatives, which intimately involved U.S. industry and universities via contract (thus implicitly 

embodying the “military-industrial-academic complex” as narrative).3 But by 2010, 20 years after 

the fall of the Berlin Wall, the Cold War template for the development and production of space-

related technologies had been substantively altered; the market had risen in prominence as a 

source and definer of technologies. Such historical change not only meant fresh assessment of the 

relations between our collections and Cold War historiography but also raised the question of the 

proper framework for thinking about historical significance in this different set of relations among 

states, markets, and culture, including a different balance between national and transnational 

contexts via globalization.

	 Not insignificantly, this political economic trajectory overlapped with the development of 

history of science and technology as fields of inquiry, especially through the science and technol-

ogy studies movement and with the concomitant reorientation of the humanities in the academy 

toward social and cultural history. In the 1990s, these intellectual developments took on even 

greater salience for museums in the heightened attention given to “objects” and “materiality” as 

critical sites of research. Such scholarly reorientations in combination had two consequences for 
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undertaking a collections rationale.4 One, now prosaic, shift was to broaden the context of inquiry 

and thus of explanation—of what historical factors related to others, with what consequence. 

In short, it extended the range of potentially meaningful artifacts. As corollary, too, it enhanced 

the historical status of “nontechnical” artifacts, helping to decenter prior intellectual tendencies 

among curators that regarded innovation and progress as the primary rationales for collecting.5 

For NASM, such repositioning gained substance in 2004 through the hiring of a curator for space-

related social-cultural history.

	 In juxtaposition with this background of scholarly conceptual change was the museum’s own 

history. Technologies of early flight came into the Smithsonian in the first decades of the twen-

tieth century, but only after World War II did the possibility of creating a specialized museum 

arise, inspired in large part by a donation from the U.S. Army Air Forces that included along with 

examples of U.S. technology a substantial number of captured German and Japanese aircraft 

and rockets. In 1946, an act of the U.S. Congress created the National Air Museum, but without 

funding to build a facility. In the mid-1960s, as the United States embarked on its spaceflight 

programs, a subsequent congressional act redesignated the facility as the National Air and Space 

Museum, yet again without requisite funding.6 Only in the run-up to the U.S. bicentennial in 

1976 did NASM gain the resources to create a separate museum, opening its doors in that year of 

national celebration on 4 July, Independence Day.7 As this chronology suggests, the museum was 

embedded in a powerful set of foundational narratives that linked the nation, progress, American 

exceptionalism, and developments in aviation and spaceflight. In Benedict Anderson’s useful 

phrase the museum served as a node in an “imagined community.”8

	 By the 1980s this public face of the museum existed if not in tension then at least in dif-

ference with the professional cultures of the curatorial departments. For their Ph.D.-holding, 

humanities-trained staff such organizing narratives became increasingly subject to demytholo-

gizing, but the critique of which took a specific form. In the museum’s exhibitions, in which the 

concerns of political and public stakeholders took precedence, these narratives largely remained 

intact. Yet in the individual, scholarly publications of curators the historiographic, intellectual 

positioning of research was indistinguishable from period academic output from the mid-1980s 

and after.9 After 2000 (following the first and second iterations of preparing collections rationales), 

it became clearer to curatorial staff that the rationale was not a bureaucratic device but a critical 

professional document. It stood poised between exhibitions (and their metanarratives) and cura-

torial scholarly publication. In contrast to exhibitions, developed with a team composed of dif-

ferent skills, the rationale was composed solely by curators, providing a vehicle for more deeply 

integrating academic perspectives into a critical area of museum life and to do so as an explicit 

expression of their expertise.

	 This shift in perspective, however, was embedded in a pattern of change in the larger Smith-

sonian that made collections stewardship throughout the institution a higher priority. This change 

came from a reinvigorated belief in the centrality of collections to the institution’s purpose and, as 

corollary, in creating stronger managerial practices to ensure their preservation for the long term, 
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both of which played into the need for marshaling political support to gain resources necessary 

to renovate or build professional-quality storage facilities.10 It also drew motivation from the 

contemporaneous, vast expansion of digital culture, nationally and internationally. In this context, 

especially, objects and collections stood as the defining element of the museum as museum. They 

were the resource, compared to exhibitions or research, most easily translated to virtual visitors 

and their varied interests—that spoke to the shifting boundaries of authority between experts and 

multiple publics. Objects, thus, became vital means and measure for linking a range of visitors 

to the institution’s educational mission. After 2000, these intellectual, institutional, and cultural 

developments came to be aligned and mutually reinforcing.

The Collections Rationale for 
Spaceflight and Rocketry, 2010
As the foregoing overview suggests a collections rationale, at least at the Smithsonian, is a docu-

ment that straddles distinct interests. Making judgments about what to collect (or remove from 

the collection) is taken as an intellectual problem delegated to relevant subject matter experts—

curators—in which practical considerations are distinctly secondary. Museum approval of such 

judgments, however, is fundamentally infused with such consideration, including provenance, 

storage, conservation, donor relations, and other concerns. But such approval is taken as a dis-

tinct step, subsequent to intellectual justifications for collecting as drawn from the departmental 

rationales. In the institution’s division of labor, thus, curators have the responsibility and au-

thority to create the rationales for collecting but do so in a complex symbiosis with the broader 

ecology of the museum and Smithsonian.

	 The 2010 collections rationale entered into this larger set of contextual relations in a specific 

way: it aimed to create an overarching narrative of the history of spaceflight and its relation to 

broader historical themes of the twentieth and early twenty-first centuries. In so doing, it sought 

to create a frame of meaning for objects, individually and collectively, and for the museum itself—

one that stood in juxtaposition with other sources of meaning. As a core claim, the rationale argued 

that spaceflight and rocketry “have been central, not peripheral, to the course of recent decades—

in terms of advances in science and technology, their relation to politics and world affairs, their 

intersection with daily life, and (especially with respect to spaceflight) the profound ways in which 

they have engendered new perspectives on the relation of humans to planet Earth and to the 

universe.”11 In short, these activities and their associated artifacts were broadly consequential 

in world history, at macro and micro levels of experience, showing the multiple, salient ways in 

which rocketry and spaceflight came to matter for and entered into individual lives, communities, 

nations, cultures, and the tangle of international relations. Thus, rather than offering a typology or 

a narrative of linear innovation or progress, the rationale sought to ground the collection in space-

flight’s historical import and its contingent construction through a variety of factors—and in the 

process de facto offering a particular definition of the museum’s relation to its subject matter.
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	 At the broadest level, the rationale aimed to situate spaceflight in the messy, complex world 

of modernity—to see it as inseparable from the larger contours of the nineteenth and, especially, 

the twentieth centuries, part of the prominent, pervasive role of science and technology in West-

ern culture, which, in turn, was bound to core concepts of politics, economics, and society. Such 

intellectual positioning is completely unexceptional—except when viewed against the backdrop 

of the museum’s prior strong attachment to U.S. exceptionalist and progress narratives.12 To take 

the modern as the broad frame opened up the range of historical issues and concerns that the 

museum’s artifacts might document and to which they might speak.

	 This broad formulation was refined along three principal vectors, reflecting several major 

categories of historiography: (1) “America in the world” literature, primarily from diplomatic 

history; (2) history of science and technology accounts of research, development, and political 

economy; and (3) cultural history. These historiographic strokes provided a first-order charac-

terization of relevant sites of production and consumption as well as modalities of causation and 

meaning. Such conceptualization provided the basis for the document’s key means of setting the 

overarching relation between history as intellectual tool and the museum’s collection of artifacts: 

to define historical periods and then relate claims of significance for particular artifacts or group-

ings to such orders or conditions. As this strategy suggests, the rationale was not only a tool to 

organize curatorial thought on the broader rather than narrower meanings of the collection but 

also to provide a reference for presenting spaceflight as subject matter to visitors. As the use of 

the diplomatic history literature implies, the rationale sought to accommodate national and trans-

national analytic perspectives but as a national museum give salience to a relevant fact: through 

the twentieth century, and increasingly so over its course, the United States became an actor of 

broad influence on the world stage. In the early decades, this primarily was via economic power, 

but with World War II, the Cold War, and post–Cold War period, this prominence was mani-

fested through military and economic power, through a myriad of relationships between the state 

and the marketplace, between activities within the nation and abroad. “America in the world” 

captures these several connotations: of the importance of science and technology to the modern 

era, to U.S. national identity, and to the United States’ sweeping role on the international stage. 

Spaceflight became integral to and signature expressions of each.

	 As pointed to above, spaceflight has not been a self-contained, insulated activity, whether 

viewed in national or international contexts. In collecting, the challenge for the curator and the 

museum is to develop an in-depth appreciation of the varied, often complicated specifics of sci-

entific and technical knowledge and practice, of the work of laboratories, factories, test facilities, 

launch sites, and the operation of space hardware. But it also is to appreciate the often strong inter-

relations among science, technology, and culture, between government and private business, be-

tween military and civilian life, between high politics and consumer society, between social elites 

and everyday citizens. In short, on the basis of historical understanding, the rationale assumed the 

interconnectedness of spaceflight in its various guises, in the specifics of its development, and as 

a component of the American experience writ large. Not surprisingly, at the time of the writing of 
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the rationale, technical or scientific accomplishments and representations of spaceflight in con-

sumer or workaday life coexisted in the collection—they just had not been explicitly connected in 

a conceptual narrative of what the collection documented and meant historically. The underlying 

claim was that such juxtaposition and convergence reflected the fluid nature of the American expe-

rience, especially after World War II—that there was and continues to be a causal interplay among 

different realms of activity, from the technical shop and laboratory, to social groups and individuals 

and an expanding, ubiquitous media, to consumer culture, and to politics.13 

	 But how were such general organizing assumptions brought down to particular contexts for 

the purposes of making collecting (or deaccession) decisions? As noted, the rationale established 

a periodization that interrelated modernity, science and technology, nation-states, the markets, 

and spaceflight. This yielded three periods: pre-1945, 1945–1989, and post-1989, a canonical 

organization from the Western perspective. Conceptually, this was crosscut with several themes: 

innovation, context of innovation, modes of political and economic organization, and the role of 

American society and culture. For brevity here, the justification for these periods and themes 

will not be elaborated, but their intent was to help document spaceflight as an activity located in 

specific places and times and in relation to broader historical trends and forces. As a rationale, 

such framing was to help assess historical significance through a series of questions:

•	 What themes and stories might the collection document for a given period or overall? 

Which stories are important or essential? Which are peripheral?

•	 Is the existing collection, assessed in terms of a given period or overall, sufficient for 

documenting stories and themes deemed historically significant? Might it be pruned or 

expanded?

•	 Are there themes/stories not yet represented by artifacts in the collection that might be 

documented through new acquisitions?

	 As sketched here, the 2010 rationale undertook the critical tasks of integrating spaceflight 

into large historical narratives and of providing a template for historical significance. Curators 

used this framework then to prepare individual rationales for their respective collecting areas 

(human spaceflight; rockets and missiles; guidance, navigation, and control; international space 

programs; U.S. national security space programs; space sciences; civilian applications satellites; 

and the social and cultural dimensions of spaceflight), each of which as a subject has overlapping 

and distinct historical configurations of institutions, technical or scientific specialties, and rela-

tions to politics and culture. These various parts, in aggregate, compose the rationale. When a cu-

rator seeks to acquire (or remove) an object for (from) the collection, he/she prepares a proposal 

that requires a clear justification based on the rationale, which then goes through three levels of 

museum review: by the home department of curator, by a museum-wide committee, and by the 

museum director. For an object to be collected, a proposer must clear all these levels of review.

	 Since 2010, more than 1,000 artifacts have been added to the museum’s spaceflight collec-

tion (and more than 200 have been deaccessioned). The rationale affected these actions in several 
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ways. At a broad level, it has altered practice indirectly: by discouraging curators from collect-

ing objects whose justification might previously have been presented in taxonomic or progress-

oriented terms. In preparing a proposal, too, the need to present historically grounded arguments 

to justify an acquisition has led to a greater level of scrutiny in the review process (particularly 

for the departmental review). In giving prominence to periodization as an analytic tool, the ra-

tionale also directly addressed two interconnected challenges. One was to provide for a clearer 

assessment of the existing collection: what artifacts does the museum need to tell the stories 

and meaning of particular moments in time, and thus, what can and should be deaccessioned? 

This was (and is still) not a trivial problem, as the core of the space collection arrived in bulk and 

absent any criteria of selection in the early 1970s, as the first wave of U.S. human spaceflight 

programs concluded. The other effect, noted earlier, was to bring into clearer focus the problem 

of documenting more recent history (the post–Cold War era), with its relative shift from state to 

market-sponsored initiatives. In short, the rationale sought to make historically grounded time its 

primary precept for thinking about the collection.

	 The most significant example, highlighting the interplay of these factors, came in collecting 

artifacts from NASA’s space shuttle program, discontinued in 2011. NASA made many thousands 

of artifacts available for disposition to educational institutions; the museum collected only several 

hundred, emphasizing the acquisition of those which could be connected to prominent period 

historical themes, bridging Cold War and post–Cold War history.14 This discretion in collecting 

reflected not only the rationale’s affirmative agenda but also a desire to avoid (as much as possi-

ble) making deaccession of shuttle artifacts a significant problem for future curators (in contrast 

to the early 1970s situation). The new rationale, with its emphasis on seeing technology in broad 

period context, also normalized collecting shuttle program artifacts associated, for example, with 

workplace culture and practices (motivational posters, tools, and the like). It also accommodated 

a variety of collecting postures, from passive “over the transom” collecting opportunities to pro-

active initiatives in individual collecting areas. The shuttle effort was a combination of the two, 

requiring proactive effort to identify the universe of possible acquisitions yet benefiting from 

NASA’s preexisting commitment to direct artifacts to the museum.

Conclusion
The 2010 spaceflight rationale, in a sense, stood as a remedial document, post hoc imposing a 

unifying scholarly narrative on an existing collection but roomy enough in its conceptualization 

and the questions asked to provide guidance to future collecting. In its historical framing, it took 

a specific stance on integrating spaceflight into the narrative and conditions of modernity. This 

decision was purposeful, recognizing that other frameworks of interpretation might have been 

posed (with progress as one handy alternative). The approach chosen fit the skill set of the mu-

seum’s curators, but equally important in the process was a basic desideratum: to articulate and 

make explicit our framework of judgments. We wanted to make clear to ourselves, our museum 

peers, and especially to our successors in the future our intellectualization of our collections 
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stewardship. There are no absolutely right choices in collecting; the best that can be done is to 

make the underlying process of judgment visible.

	 As the foregoing analysis suggests, the rationale was, in an important way, an idiosyncratic 

document, a product of the particular professional environment of the museum’s Department of 

Space History. The Department of Aeronautics rationale written at the same time hewed more 

closely to the prior intellectual framing. This difference reflected (and still reflects) the two depart-

ments’ relative independence in this area of museum life, a fragmentation that persists across the 

Smithsonian as a whole. The institution has no overarching mechanism for organizing and sharing 

rationales across its many museums. These circumstances only emphasize how institutionally and 

culturally specific the production of a collections rationale is, bound to the needs and history of 

local circumstances. If the scholarly derived, retrospective work had been done in a prior space-

flight rationale, the 2010 effort might have looked different, focusing perhaps more intensively, 

say, on the specific challenge of representing the post-1980 sociotechnical elaboration of the turn 

to the market. The document, too, is modern in its own way, taking expertise as its organizing 

principle.15 One can easily envision a future model in which networked or crowdsourced modes of 

knowledge play a much more prominent role in collecting, not merely out of a democratic impulse 

but because they speak to the historical conditions that museums may seek to document.

Notes
  1.	 For a partial accounting of this shift see National Air and Space Museum, “Collections Management Guide,” (unpublished 

document, 1992). The preparation of this document was stimulated by Smithsonian Institution Office Memorandum 808, 1990 
rev., which required each Smithsonian museum to develop a collections plan.

  2.	 This collection also includes artifacts relating to rockets, some of which (such as the V-2 or intercontinental ballistic missiles) do 
not in their own historical context derive their primary meaning from their association with space. In this essay, spaceflight, in 
relation to the museum collection, is meant to include rocketry artifacts.

  3.	 As of 2014, the national collection of rocketry and space artifacts numbers almost 15,000 artifacts, of which about 1,400 are on 
display at the museum’s two facilities (the National Mall building and the Udvar-Hazy Center), almost 1,100 are on loan, and ap-
proximately 12,500 are in storage. Artifacts range in size from the massive Saturn V rocket (over 350 feet long) to a fingernail-
size silicon chip used in the search for extraterrestrial life and arc in time from an early nineteenth-century Congreve rocket to 
twenty-first-century developments such as SpaceShipOne.

  4.	 One useful marker of this intellectual interest is Tony Bennett and Patrick Joyce, eds., Material Powers: Cultural Studies, History 
and the Material Turn (London: Routledge, 2010).

  5.	 The narrative of progress has been a defining characteristic of the museum since its inception, waning but not disappearing 
in recent years. For a critique of the museum in this regard see Michal McMahon, “The Romance of Technological Progress: A 
Critical Review of the National Air and Space Museum,” Technology and Culture 22, no. 2 (1 April 1981): 281–296.

  6.	 What this new legislation foregrounded was U.S. civilian initiatives in science and human spaceflight, which comported with 
those national narratives just mentioned. Not highlighted were U.S. national security space programs, often executed under 
classification strictures. By the mid-1970s, such programs garnered the majority of U.S. space expenditures.

  7.	 For an overview history of the museum see Michael J. Neufeld and Alex Spencer, Smithsonian National Air and Space Museum: 
An Autobiography (Washington, D.C.: National Geographic Society, 2010).

  8.	 Benedict R. O’G. Anderson, Imagined Communities: Reflections on the Origin and Spread of Nationalism, rev. ed. (London: Verso, 
2006). See especially chapter 10, “Census, Map, Museum.” Such cultural positioning provides the background for the widely 
publicized controversy in 1994–1995 over the museum’s proposed exhibition on the Enola Gay and the end of World War II.

  9.	 An indicator of this might be those examples of museum scholarship that received awards from professional societies. See 
Robert W. Smith, The Space Telescope: A Study of NASA, Science, Technology, and Politics (Cambridge: Cambridge University 
Press, 1989), History of Science Society, Watson Davis and Helen Miles Davis Prize, 1990; Michael J. Neufeld, The Rocket and 
the Reich: Peenemünde and the Coming of the Ballistic Missile Era (New York: Free Press, 1995), Society for History of Technol-
ogy, Edelstein Prize, 1997; and Martin Collins, “One World One Telephone: Iridium, One Look at the Making of a Global Age,” 
History and Technology 21 (2005): 301–324, Society for History of Technology, IEEE Life Members Prize, 2006.

10. This turn in its timing and emphasis was captured by the Smithsonian’s key policy document on collections management, 
Smithsonian Directive 600: Collections Management (Washington, D.C.: Smithsonian Institution, 2001). It set the framework 
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and requirement for the creation of collections rationales by individual museums as well as the meaning of collections in the 
institution’s ethos: “The acquisition, preservation, management, and study of collections are fundamental to the Smithsonian’s 
mission and have been the foundation upon which its reputation rests. Assembled over more than 150 years, the national 
collections are central to many of the core activities and to the vitality and significance of the Smithsonian. Collections serve 
as an intellectual base for scholarship, discovery, exhibition, and education. Collections also provide content for Smithsonian 
ventures such as publishing, licensing, and media projects.”

11. Department of Space History, National Air and Space Museum, collections rationale, 2010. Note that at present this document 
is not available publically. 

12. A 1981 review of the museum, five years after its opening, in Technology and Culture made the commitment to such narratives 
the centerpiece of its critique; see McMahon, “The Romance of Technological Progress.” Such intellectual dissonance between 
the progress narrative and the broader complexities of history has been acutely reflected, as a key example, in the museum’s 
evolving exhibit treatment of the German V-2 missile; for an account of this see David H. DeVorkin and Michael J. Neufeld, 
“Space Artifact or Nazi Weapon? Displaying the Smithsonian’s V-2 Missile, 1976–2011,” Endeavour 35, no. 4 (2011): 187–195.

13. As the leader of the Department of Space History’s 2010 revision of the rationale, I developed this intellectual framework; 
individual curators then used it to write the rationales for their specific collecting areas, filtered through their understanding 
of historiography relevant to their objects. I then reviewed and edited their drafts to ensure a close relationship between the 
overarching framework and their contributions to the rationale. The finished product was composed of an introduction pre-
senting the rationale’s overall organizing ideas and the individual curatorial rationales, the entire effort identified as a collective 
statement of the department.

14. Two aspects of this process should be noted. Since 1967, by a memorandum of understanding (MOU) with NASA, the museum 
had the right of first refusal for objects the agency no longer deemed as having operational value. This MOU made it possible 
for the museum to receive, among other objects, the iconic spacecraft of the Mercury, Gemini, and Apollo programs. In the 
early 1970s, the museum acquired, with little discrimination, thousands of objects from these programs. This MOU still is in 
force, and the museum could have acquired objects from the shuttle program on a similar scale. But the 2010 rationale made 
thoughtful, intellectually supported collecting a high priority, thus resulting in a smaller number of acquisitions. This approach 
was reinforced by a heightened pragmatic concern that emerged in the 2000s: the reduced availability of and the costs associ-
ated with developing additional museum storage space.

15. A critique of this curator-centered collecting methodology at the Smithsonian is put forward in Steven Lubar, “Fifty Years of 
Collecting: Curatorial Philosophy at the National Museum of American History,” Federal History Journal, no. 7 (2015): 82–99.
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CHAPTER 4

Understanding  
“Contemporary Collecting”
Modern Collecting at the Science Museum

With its focus upon the delocalized� “now,” the cat-

egory of “contemporary collecting” is inherently 

ahistorical. Yet the category itself can be analyzed 

historically. At particular times, the practice has 

been a part of institutional strategies designed to 

respond to intense societal pressures and to make 

important cultural contributions. A former director 

of the Science Museum, Neil Cossons, has argued 

that the “tension, between the need to educate 

and instruct, and the wish to preserve and record, 

forms a continuous thread throughout the history 

of the Science Museum and of its great sister insti-

tutions overseas.”1 The changing resolutions of this enduring tension has been a critical part of 

the history both of museums and of societies. The Science Museum itself is the second-oldest 

collection of its kind, after the museum at the Conservatoire National des Arts et Métiers. It is 

also hugely influential worldwide. Its development therefore provides an interesting case study 

that might provide insight into the entire sector as well as its own distinctive history. This paper 

explores the relationship of past and present across the museum’s history, examines the concept 

of contemporary collecting, and argues that the category itself, as it operated at the Science 

Museum, needs to be understood in terms of the special historical circumstances of the 1980s 

and 1990s. 

Robert Bud
Research Keeper

Science Museum 
London, United Kingdom
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Late Nineteenth and Early Twentieth 
Centuries: Evolutionary Models, 
Objects from the Past Point the Way 
to the Contemporary and the Future
The particular meaning of the late twentieth-century context is highlighted by contrasts, and 

also analogies, with the period a century earlier when the museum was founded and, more gen-

erally, the relationship between past, present, and future were being renegotiated. The decade 

of the 1880s was a period in which the British had become aware of the world their last century 

had wrought and also the passing of that industrial hegemony. Reevaluating that period, the 

historian and social commentator Arnold Toynbee popularized the term “Industrial Revolution” 

to denote its disruptive social turmoil. The writings of the social evolutionist Herbert Spencer, 

familiarly summarized as “survival of the fittest,” were popular. They would deeply influence the 

most important philosopher of technology in the English-speaking world of the early twentieth 

century, Patrick Geddes.2 Historian Jose Harris has talked of “the widespread (albeit temporary) 

collapse of confidence in the doctrines of classical economics.”3 Harris suggests that even if the 

political recommendations of Marx and Engels were not widely accepted, their historicism was 

popular.4 Foreign competition, particularly from Germany and the United States, was a matter of 

grave concern, and an enduring industrial recession was addressed by a Royal Commission on 

the Depression of Trade and Industry of 1885–1886. Within this context of national reevaluation, 

models of engineering and of training were changing. New colleges in South Kensington, Man-

chester, Leeds, Newcastle, Glasgow, Aberystwyth, and elsewhere were established to provide an 

academic background in science and engineering hitherto despised. The heroic self-educated 

individuals mythically associated with Britain’s supremacy, James Watt, George Stephenson, and 

William Arkwright, had been replaced by a new generation of chemists, electrical engineers, and 

specialist mechanical engineers, exemplified by Sir William Siemens, calling for more technical 

education. The alternative, it was widely warned, was relative economic decline and political 

eclipse that even a newly entitled empire could not prevent.5

	 The beginning of the decade also saw the formation of the Science Museum in South Kens-

ington. This was effected, as a matter both of conviction and convenience, by amalgamating three 

collections and three visions.6 The recently presented Loan Collection of Scientific Apparatus, 

including both contemporary and historic artifacts, had been assembled as a celebration of the 

culture of science. The nearby Patent Office Museum was dedicated to the history of invention 

rather than anything contemporary. On the other hand, the miscellaneous artifacts contributed 

by the South Kensington Museum were intended to be part of technical education. The found-

ers were well aware of this heterogeneous legacy. The science collections were overseen by a 

committee whose first chairman was Thomas Huxley, Darwin’s bulldog. The museum moved 
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into a space vacated early in its life by an exactly contemporary private museum of General Pitt 

Rivers devoted to showing the evolution of the rifle and of war. This collection was based in 

South Kensington from 1879 to 1884 before moving to Oxford, where it is still today.7 Perhaps not 

surprisingly, the Science Museum that replaced it also sought to integrate its collections within 

an evolutionary model, emphasizing “various steps in physical discovery and its applications” 

and “critical discoveries and methods.”8 The engineering committee rejected “objects as have no 

historical interest, and are neither good examples of accepted practice or modern improvements, 

nor steps or links in invention.”9 This evolutionary metaphor was therefore also a matter of both 

conviction and heuristic convenience (Figures 1 and 2).

1. 
An acquisition of contemporary science acquired in 1876: Lord Kelvin’s recent tide predictor. © Science 
Museum / Science & Society Picture Library.
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	 Until 1909, both the art museum next door and the Science Museum were part of the same 

administrative structure within the Department of Science and Art (later the Board of Educa-

tion). This arrangement had gone back to long-superseded visions of Prince Albert of a holistic 

industrial culture expressed in the South Kensington Museum. By the end of the century, how-

ever, the two museums, on opposite sides of the road named after the Great Exhibition to which 

it had led (Exhibition Road) were entirely different. The art museum as a matter of principle 

acquired the timelessly beautiful and admirable, and since it would take two generations to 

confirm the timeless value of an item, objects less than 60 years old were not acquired.10 The 

Science Museum by contrast was devoted to change. Acquiring and showing the modern and its 

ancestors lay at the heart of the enterprise. Beyond that there was the key objective of showing 

how modern machines and achievements, applied science, could be related to the discoveries of 

pure science. 

	 However, the next 30 years were devoted to fighting for proper accommodation through 

endless Parliamentary enquiries and debates with members of Parliament skeptical of spending 

and of museums. The issue was not what to collect so much as how to make a case for existence. 

As a paper put to the government’s key decision-making cabinet in 1910 explained, “Without 

more space to store and display there was In consequence of the want of accommodation and 

the danger from fire we have lost many valuable gifts and bequests, some of which have gone 

2. 
A late nineteenth-century contemporary science acquisition: Parsons’s steam turbine generator. © Science Museum / Science 
& Society Picture Library.
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to Germany.”11 The building that was then agreed opened, after a wartime intermission, in 1928 

under an inspiring new director, Henry Lyons. The decade after the World War I would there-

fore be the critical period for the museum to sort out a philosophy relating past, present, and 

future. 

	 The objects acquired in the 1920s would be critically important to the museum’s success 

then and future identity. One in eight of the museum’s most important objects identified in the 

1990s were acquired in the 1920s. This was a decade that began with discussions over the very 

existence of the museum and ended with the accolades of being the most visited museum in the 

country, reaching a million visitors a year, and of being one of the five most exciting museums in 

the empire.12 During this decade of the 1920s, the museum opened its major permanent galleries, 

and these were followed by important temporary exhibitions in the 1930s. 

	 Even before its full reopening in a new building, during the 1920s the museum played 

an important role in the nation’s reflection on the meaning of science after the trauma of the 

Great War. Unfamiliar industries, electricals, chemicals, airplanes, and motor cars competed 

with, and often replaced, the traditionally dominant staples of British manufacturing, textiles, 

shipbuilding, steel, and coal. New scientific concepts, such as electrons, radioactivity, and new 

materials, needed to be assimilated. In the wake of extreme dislocation, the Science Museum 

provided a way of locating the present and the future in terms of continuity with the past, albeit 

rewritten. The curators were scientists and engineers with little connection to the new disci-

pline of the history of science. This disconnect between curators and discipline was striking 

even when the just-completed museum lecture theater hosted the famous 1931 Congress on 

the History of Science organized by Charles Singer, Britain’s first professor in the discipline. 

The session on the interdependence of pure and applied science chaired by the museum’s 

director was addressed by professional scientists making arguments about the present day, em-

bellished with a few historical references.13 To the Science Museum of the time, the past was 

not a foreign country.

	 In a recent doctoral dissertation, Imogen Clarke has given detailed attention to the devel-

opment of physics at the Science Museum in the 1920s and 1930s.14 She shows the inspiration 

of the British Empire Exhibition held in Wembley in 1924–1925. This exhibition was a huge 

event whose physical legacy would endure to the beginning of the twenty-first century and that 

was visited at the time by 27 million visitors. Much of the published secondary interpretation 

has focused upon its imperial representations. However, it had two huge “palaces” dealing with 

“industry” and “engineering,” respectively, as well as a government building. The latter housed 

a section organized by the Royal Society on “pure science” that was concerned with physics 

and life sciences. Chemistry was treated in a separate exhibit within the Palace of Industry. Vir-

ginia Woolf visited the exhibit while she was writing her novel Mrs. Dalloway.15 In the novel, a 

character reflects on the airplane as a symbol of man’s determination “to get outside his body, 

beyond his house, by means of thought, Einstein, speculation, mathematics, the Mendelian 

theory.”16
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	 The entire focus of this exhibition was on the contemporary and the future. However, ob-

jects from the past could be used to tell contemporary stories. Thus, artifacts of Faraday and 

Humphry Davy were shown, making the point that even science conducted for no practical 

purpose could have great industrial consequences, then or much later. A more recent example 

of such a story was embodied by the apparatus of the recently retired director of the Cavendish 

Laboratory in Cambridge, J. J. Thomson. His apparatus had already been donated to the Science 

Museum, where it had been shown demonstrating research on cathode rays. Now it represented 

the discovery of the electron, a discovery used by the wireless valve invented by Ambrose Flem-

ing and shown in the only engineering-oriented section of this exhibit.17 In other words, this 

exhibit used devices drawn from a variety of ages to show contemporary stories about science as 

conceived by Ernest Rutherford, then director of the Cavendish (Figure 3).

	 As Clarke has shown, this sort of strategy was followed in the 1930s with competing mod-

els of modernity including the pure science of the Atom Tracks exhibition, which included the 

Wilson cloud chamber from the Cavendish, and the applied science of geophysics, including the 

Eötvös torsion balance on which the curator Herman Shaw was himself conducting research 

(Figure 4). Meanwhile, the museum was under pressure from its advisory council to represent 

the “development and current practice of industry.” Indeed, a secondary title for the institution, 

National Museum of Science and Industry, was introduced at this time.18 

3. 
The iconic Science Museum loan to the 1924 British Empire Exhibition. J. J. Thomson’s “original” e/m tube. © Science 
Museum / Science & Society Picture Library.
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4. 
Research on modern geophysics in the 1930s: Eötvös torsion balance. © Science Museum / Science & 
Society Picture Library.
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	 The museum acquired both inspiration and artifacts from the 1924 British Empire Exhibi-

tion. As the future director David Follett pointed out, “many of the exhibitors there responded 

generously to requests from the Museum and presented or lent examples illustrating current 

practice, a field which has always tended to be under-represented in the Museum, largely be-

cause of shortage of exhibition space.”19 Yet although a large number of new and recent artifacts 

were being acquired at this time, the emphasis was on their continuity with a past that could be 

seen to contain the seeds of the present. It was a model of history that in the postwar years would 

be severely tested and lead to great controversy, particularly at Cambridge University, as Seb 

Falk has recently shown.20 

The Mid-Twentieth Century
At the Science Museum, the changing relationship between past and present was expressed 

in a more muted manner than in Cambridge. Singer’s pupil Frank Sherwood Taylor enjoyed a 

short directorship (1950–1956) fraught with tension between historian director and scientific 

keepers and his own illness. A 1963 article in the Guardian newspaper dismissed the museum’s 

“rare excursions into the twentieth century.”21 The next decade, however, saw major develop-

ments in design and display technique led by the pioneering keeper William Thomas O’Dea. 

He began his career in 1930 responsible for the lighting collections but would go on to mount 

the shipping collection and hang the great aircraft collection in the newly completed extension, 

entitled the Centre Block, of the museum. In 1966 he would leave to be the founder director 

general of the Ontario Science Centre. O’Dea’s attention to visitor-oriented design was radi-

cally innovative, but his historiography, as Andrew Nahum has pointed out, was quite conven-

tional. Aircraft were hung in chronological order, and engines were arranged taxonomically.22 

Moreover, remarkably little was collected in the 1960s.23 More explicitly historically minded 

was the younger Frank Greenaway, a protégé of Sherwood Taylor and keeper of chemistry in 

the 1970s, who developed the relationship with the burgeoning discipline of the history of 

science (taking a Ph.D. himself), recruiting staff with an interest and qualifications in history 

and at the same time taking an interest in contemporary science. Increasingly, rather than 

history being seen as prologue to the present, the present was portrayed in terms of long-term 

trends established in the past and continuing into the future. Thus, the major gallery on gas 

opened in 1976 treated the newly found and supplied natural gas but as part of the history of 

the gas industry. This industry began early in the nineteenth century and was continuously 

pioneering, so that in the 1960s it supplied towns with gas no longer made only from coal but 

supplemented with catalytically reformed gas from petroleum and imported liquefied natural 

gas. The historical arguments were rehearsed in a chapter on the chemical industry for the 

twentieth-century volume of the great history of technology published in 1978.24 Thus, by the 

early 1980s, a historicism that had been born at the same time as the Science Museum itself, 

was now a dominant motif within it.
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1980s Onward: Responding to Changes 
in Society, Visitor Demands, and the 
Public’s Relationship to Science
A quite different approach to history and the present developed in the 1980s and 1990s under 

the directorship of Neil Cossons, who held office from 1986 to the end of the century. This pe-

riod saw the efflorescence of two related strategies within the museum and a rapidly changing 

environment. A radical technological revolution was associated with a great industrial transfor-

mation. Biotechnology and information technology took the place of the electrical and chemical 

industries. Unlike those predecessors, of course, although they had strong British representation, 

they were visibly centered overseas, in the United States and Japan. Meanwhile, the industrial 

partners of the museum, important stakeholders since the 1920s themselves and latterly British 

champions of their industries, were transformed: the Hawker Siddeley Group, whose chairman 

had been the Science Museum’s first chairman of trustees in 1984, was taken over by “BTR” in 

1992; Britain’s General Electric Company (GEC) became Marconi in 1999 before disappearing 

in 2005; and the nation’s longtime largest manufacturing company Imperial Chemical Industries 

(ICI) first ceased to be an integrated chemical company in 1993 before being taken over in the 

next decade. Nationalized industries British Gas, the Central Electricity Generating Board, and 

the United Kingdom Atomic Energy Authority were privatized and transformed. The great mil-

itary laboratories were first brought together as a nationalized agency but then privatized. For 

the curators of the museum who had depended on gifts from the research and factories of these 

close partners for many of their acquisitions, this transformation in the international structure of 

business was a matter of daily import. 

	 There was also a demand-side transformation. No longer were visitors to the museum likely 

ever to have been in a factory. They were potential consumers, not producers. Lord Weinstock, 

chairman of GEC, warned a select committee of the House of Lords in 1985 that Britain would 

be reduced to supplying the Changing of the Guard and Beefeaters.25 Employment in manufac-

turing, which had been falling by 5% per decade since the 1960s as a percentage of the workforce 

as a whole, kept falling. It dropped from 36% in the 1960s to 31% in 1975 to 26% within a decade 

and by a further 10% in the following 20 years.26 The Google Ngram Viewer shows how the term 

deindustrialisation took off in the decade from 1975 (when it was hardly known). Anxiety about 

what was happening to the country is represented by usage of the term in the late 1980s, which 

experienced a thirtyfold increase as a percentage of books scanned by Google compared with 

the figures from just five years previously.27 Not only, therefore, were the companies of the past 

ceasing to be parts of the contemporary cultural landscape, but the experience of manufacturing 

which they had embodied was removed from visitor experience. Government science funding for 

basic science also fell as part of national expenditure cuts. In response, the Royal Society, British 

Association for the Advancement of Science, and Royal Institution launched the Committee for 
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the Public Understanding of Science (COPUS), which published its report in 1986. The lobby 

Save British Science was founded following a January 1986 advertisement in the Times newspa-

per. However, even when government policy became more positive to scientific research under 

Margaret’s Thatcher’s successor John Major, public skepticism of science remained. A report 

published by the House of Lords science committee in 2000 expressed the issues in a seminal 

manner, beginning under the heading “A crisis of trust”:

Society’s relationship with science is in a critical phase. By “science” we mean the biolog-

ical and physical sciences and their technological applications. On the one hand, there has 

never been a time when the issues involving science were more exciting, the public more 

interested, or the opportunities more apparent. On the other hand, public confidence in 

scientific advice to Government has been rocked by a series of events, culminating in the 

BSE fiasco; and many people are deeply uneasy about the huge opportunities presented 

by areas of science including biotechnology and information technology, which seem to 

be advancing far ahead of their awareness and assent. In turn, public unease, mistrust 

and occasional outright hostility are breeding a climate of deep anxiety among scientists 

themselves.28

	 In this atmosphere, the Science Museum’s former assumptions of the continuity of past and 

future prevailed no longer. Instead the museum, under its director, Neil Cossons, had become a 

major player in the movement to enhance public understanding of and engagement with science. 

Indeed, John Durant, the museum’s assistant director and head of science communication at the 

museum, was a specialist advisor to the House of Lords committee. This was no passive role of 

following an existing movement but rather an active response to shared problems. These were 

expressed by Cossons in a 1992 Guardian article based on a presentation he had made at the 

American Association for the Advancement of Science. He began with the attitudes he wished to 

combat: “Science is something one grows out of with the coming of civilized tastes.” “The intel-

ligence of the average Leicester businessman is subnormal.” “To work in engineering or industry 

is a despicable life in which no sane person should be engaged.”29 The article chastised those 

for whom the enterprise of public understanding of science was merely a matter of professional 

one-upmanship.

	 The process of acquisition was not at the obvious forefront of this campaign, but it was a 

necessary component of it, at a time when every sinew had to be bent to institutional survival. 

Between 1987 and 1997 the museum, with strong government encouragement, charged many of 

its adult visitors to enter. The reported number of visitors fell by 33%.30 Experimental temporary 

new exhibitions on such topics as chaos theory and passive smoking were launched under the 

distinctive brand of “science box.”31 These exhibitions were interpretation rich rather than object 

rich but also necessarily small because of the lack of free space. The museum therefore returned 

to an ambition for a westward expansion anticipated since the founding document of 1911. There 

was space for this to the west of the existing museum buildings but no funds to enable new 
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construction. An options appraisal from the years 1993–1994 for a mixed development in the west 

end through which property development would pay for new galleries on contemporary science 

began, “A fundamental shift is needed in the profile of science and technology.” It explained that 

therefore, “the Museum intends to devote a higher proportion of its resources to modern science 

and technology.” The paper accepted the separate responsibility to care for and interpret its his-

toric collections, which were, it was claimed, the world’s finest.32

	 At a time of increasing competition for the attention of citizens and visitors, the world-

beating qualities of the collections came to be appreciated even more.33 Soon after Neil Cossons 

was appointed, he called for the formulation of a collecting policy. This policy was constructed 

with the existing categories in mind, though the interest of contemporary artifacts was high-

lighted as both important signifiers of immediate issues and of long-standing processes. Similarly, 

in 1992, the director edited a high-profile volume, Making of the Modern World: Milestones of 

Science and Technology, based on individual treatments of 100 of the museum’s objects from 

Huygens’s aerial telescope to Marconi’s transmitter, from the Merlin aircraft engine to the re-

cently patented Oncomouse. This year saw the beginning of determined endeavors to promote 

the interpretation of distinctively contemporary issues, and to build up substantially the process 

of acquiring contemporary collections (Figure 5).

	 By 1992, the previous collecting policy needed to be superseded by a new policy for the next 

five years. Unlike its predecessor, this one foregrounded contemporary collecting, understood as 

covering post-1960 material. A Contemporary Acquisition Committee was created, under the 

5. 
The first patented animals: the Oncomice, patented 1987, acquired 1988. © Science Museum / Science & Society Picture 
Library.
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chairmanship of the Head of the Division, and this committee identified three areas that did not 

fit the museum’s subject-based typology but had a high public profile. “Software and simulation,” 

“nanotechnology,” and “biomedical engineering” were highlighted. Unfortunately, the staff allo-

cated to work on these areas were soon needed for other duties, and the project was not in itself 

responsible for the acquisition of many new objects. Moreover, a major problem was reported in 

the next collecting policy of 1995:

Increasingly, owners of contemporary frontier-technology are reluctant to donate their ob-

jects to the Museum due to the financial worth of the items involved and the difficulty of 

providing instant public display. Even near-frontier-technology is seen to have a high cash 

value since it is increasingly being sold to developing countries as the pace of innovation in 

developed countries increases to stay ahead of the competition; allied to this factor is the 

overall decline in altruistic donation.34

	 Such problems explained, in part, why an aspiration of getting up to 70% of the museum’s 

annual acquisitions to be post-1960 was not reached. Nonetheless, this period was one in which 

large numbers of recent items were acquired. In the year 1994–1995, 1,618 inventory numbers 

were issued, of which 929, or 57.5%, related to post-1960 objects.35 Fewer objects were acquired 

in subsequent years, but the percentage of these modern objects was somewhat higher. The air-

field at Wroughton near Swindon, acquired in 1978, offered vast hangar space to accommodate 

new acquisitions, and even when a rented store at Hayes in Middlesex had to be vacated, it could 

be replaced by a brand-new building on the Wroughton site as well as the former Post Office 

Savings Bank building in Olympia. The availability of space at Wroughton to store aircraft, hov-

ercraft, large cars, and suites of industrial machinery was a unique experience in the museum’s 

history. This was an era, even before collecting specifically intended to populate the exhibits in 

the new Wellcome Wing, in which a large number of interesting artifacts were collected. Dolly, 

the first cloned adult mammal, was always destined for the Royal Scottish Museum (now the 

National Museum of Scotland), but her genetically modified predecessor Tracy was acquired, 

along with much technology associated with Dolly’s conception and birth; a sweater made from 

Dolly’s fleece did come to the Science Museum. The first PCR machine was brought in from 

California, to the dismay of the Smithsonian Institution, and an important Soviet supercomputer, 

the BESM-6, was bartered for a suite of IBM 486 personal computers.

	 In the history of the museum overall, the great peaks of acquisition have been associated 

with eras of new exhibition. Donors have been more supportive with the prospect of display, and 

until the mid-1970s storage for nondisplayed items was extremely limited. Despite the wonders 

of its collections, therefore, even the Science Museum had not aspired to the encyclopedic am-

bitions of museums in other fields. The availability of the stores at Wroughton and Blythe House 

briefly seemed to portend a new era. Topics such as biotechnology could be collected without an 

eye to immediate exhibition. Moreover, the emerging prospects of multimedia (first the CD and 

then the web) suggested new avenues for interpretation. In 2002 the museum began two major 
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projects toward the new online exhibitions, Ingenious and Making the Modern World, each of 

which would attract millions of visitors after their launch in 2004. These were explicitly intended 

to enable the interpretation of collections beyond the possibilities of the museum floor and to 

escape the tyranny of space in South Kensington.

	 The opportunity to deploy the new history of science and technology to interpret not just 

the distant but also the recent past to contextualize contemporary developments was exciting. 

Increasingly, the curators took doctorates in the history of science and technology. Wiebe Bijker, 

the Dutch pioneer of the social construction of technology, had drawn upon the museum’s rich 

collections of bicycles and plastics as key resources. His approach was drawn upon internally, for 

instance, by Ghislaine Lawrence, the curator of clinical medicine, in her doctorate and by others 

in the volume Technologies of Modern Medicine.36 Nonetheless, I have argued elsewhere that 

although new historical understanding and novel narratives could inform acquisitions of modern 

material, once this was incorporated within existing collections, it could easily be swamped by 

the older narratives that were embodied in those physical assemblages of interesting material.37 

Thus, the distinctive methodologies underlying the new Health Matters Gallery that dealt spe-

cifically with twentieth-century medicine were perhaps more obvious to the curators than to the 

visitor engaging with medicine as a whole.

	 This sense that the old had all-too-often swamped the new was, perhaps, the dominant 

driver to the presentation of the all-contemporary Wellcome Wing, which opened in 2000. With 

the ground floor devoted to breaking science news, the first floor to implications of modern 

genetics, the second floor to the digital revolution, and the third floor to imagined futures, this 

was a history-free zone. The objects acquired for the exhibitions illustrated narratives that were 

drawn from contemporary science journalism rather than historicism. At the same time, the wing 

is approached by a new gallery within the body of the existing building. Making the Modern 

World takes the visitor through a panorama of artifacts from the early industrial revolution to the 

end of the twentieth century. The inclusion of this historicist treatment was required to obtain a 

major contribution to the overall funding for the whole development from the National Heritage 

Lottery Fund. 

	  The opening of the Wellcome Wing proved to be the high point of both historicist and 

contemporary collecting. Cossons’s retirement shortly after the opening and his succession by 

Lindsay Sharp as director prompted a reevaluation of collecting practices. Collecting of all types 

of artifacts was reduced sharply. The relationship between collecting within the Collections Divi-

sion and the interpretation within Communications Division had been one of a creative tension. 

Insofar as there were problems, there was duplication and unproductive competition within a 

cash-strapped institution. When it worked, however, as it frequently did, the results were im-

mensely beneficial. 

	 The partnership was not just between two internal divisions and between individuals but 

also between philosophies and communicative methodologies. The Wellcome Wing was specifi-

cally an achievement of the public understanding of science (PUS), a discipline whose journal was 
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founded and edited at the Science Museum by John Durant.38 Although born out of a movement 

based on what was felt to be necessary propaganda for science, PUS became a sophisticated part 

of the broader new constellation of “science, technology, and society,” represented, for instance, 

by the European Association for the Study of Science and Technology. This movement was quite 

separate from the history of science and technology, but the relationship of the two disciplines 

has developed over a quarter of a century. 

Present and Future
By the early twenty-first century the former divisional structure that had firmly demarcated the 

territories of the historicist and the contemporary had been superseded. What had been tensions 

that could be caricatured as a split between a public understanding of science driven purely 

by the presentist concerns of the scientific community and the historians’ concerns to see the 

present as an extension of the past were superseded. A focus on the deeply rooted cultures of 

the museum’s many publics, with their own historical awareness framing current concerns, and 

engagement rather than conversion have provided a much more coherent intellectual model 

for both display and acquisition. This shift has required a new historiographic program not de-

pendent on academic teaching models, of which the Artefacts consortium itself is an expression. 

In France it has been expressed through the PATSTEC (Patrimoine scientifique et technique 

contemporaine) website.39 Such a program can inform decisions on not only exhibition but also 

acquisition and, indeed, web interpretation. The century-old distinctions, with which this paper 

has been concerned, were in themselves becoming superseded.
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CHAPTER 5

Software Archives and Software Libraries

Defining the 
Software Collection
Conversations about historical software archives 

and collections preceded the rise of the web and 

the advent of digital libraries, events of the early 

1990s that stimulated projects for the preservation 

of digital objects. The problem of how to document 

computing hardware and activities emerged even 

earlier, before much attention was paid to software 

as a historical object. In this essay, I will focus on 

collecting software with three points of emphasis. 

The first is historical. When did cultural institutions in the United States begin to collect soft-

ware, and what did they collect? This historical background sets up the rest of the essay. Second, 

my discussion of “software” will be limited generally to formats that have thus far, for better or 

worse, dominated collections in cultural institutions. This means microcomputer software and 

digital games of the period from the late 1970s through the early twenty-first century. I under-

stand the limitations of collections that do not nearly reflect the full range of historical software 

development, but they do provide a foundation for addressing issues of preservation, access, and 

exhibition that museums and libraries will face as we move forward. Those issues will be the 

third point of emphasis. The endgame will be a discussion of the challenges faced by institutional 

curators in developing priorities for their care of historical software collections. 

	 Institutions and individual collectors began in the late 1970s to gather archival documen-

tation and build libraries for research on the history of computers. The Charles Babbage Insti-

tute (CBI), for example, was founded in 1978. Its efforts dovetailed with those of a History of 
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Computing Committee formed by the American Federation of Information Processing Societies 

(AFIPS), and AFIPS became a major sponsor of CBI. Around that time the AFIPS committee 

produced a brochure called “Preserving Computer-Related Source Materials,” which was distrib-

uted at the National Computer Conference. The brochure provided the following information:

If we are to fully understand the process of computer and computing developments as 

well as the end results, it is imperative that the following material be preserved: corre-

spondence; working papers; unpublished reports; obsolete manuals; key program listings 

used to debug and improve important software; hardware and componentry engineering 

drawings; financial records; and associated documents and artifacts.

In other words, paper records. The recommendations did not mention the preservation of data 

files or executable software, although there was a brief nod to the museum value of hardware arti-

facts for “esthetic and sentimental value” and to provide “a true picture of the mind of the past, in 

the same way as the furnishings of a preserved or restored house provides a picture of past soci-

ety.” One year later, in 1979, CBI received its first significant donation of books and archival doc-

uments from George Glaser, a former president of AFIPS. Into the 1980s institutional projects 

primarily gathered documentation: archival records, publications, ephemera and oral histories.1 

	 Attention to historical software archiving and preservation followed documentation projects 

or historical work and to some degree grew out of them. Two noteworthy movers in shifting at-

tention to software as archival objects were David Bearman and Margaret Hedstrom. Bearman 

left his position as deputy director for information resource management in the Office of Infor-

mation Resource Management in the Smithsonian Institution in 1986 to create a company called 

Archives & Museum Informatics. He envisioned this new company as a research organization 

and a consulting firm. Bearman had written extensively on the application of new information 

technologies to archival and museum management. He began publishing the Archival Infor-

matics Newsletter in 1987 (the title changed to Archives and Museum Informatics in 1989). Both 

the company and its newsletter offered a forum for exchanging information about informatics, 

particularly about how to automate archives and museums. Informatics did not simply mean 

institutional change, however. Bearman was also considering software both as a collection object 

and as an interactive medium that could extend museum programs.2

	 As one of its earliest consultations, Archives & Museum Informatics drafted policies and 

procedures for a “Software Archives” at the Computer History Museum (CHM) then located in 

Boston. In 1987, Bearman published the first important study of software as a collection object: 

Collecting Software: A New Challenge for Archives and Museums. Bearman’s report provided 

reasons both for frustration and persistence. He wrote frankly that a telephone survey of “a few 

computer companies, high-technology firms, universities, professional associations and govern-

ments” conducted in 1987 had revealed that “no one seems to have formed a software archive 

nor is anyone collecting software documentation, except as an inadvertent biproduct of institu-

tional archives.” He named only one exception: CBI. Indeed, “the concept of collecting software 
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for historical research purposes had not occurred to the archivists surveyed; perhaps, in part, 

because no one ever asks for such documentation!”3 He found neither actions nor intentions to 

build software archives among those surveyed. Meetings with the CHM, Smithsonian, and CBI 

had instead convinced him that “no single institution, or even group of institutions as prestigious 

and well situated as the sponsors [of his CHM report] were, could expect to collect the entire 

corpus of software related materials.”4 Undaunted, Bearman produced a report that carefully 

considered software archives as a multi-institutional endeavor, including collection policies and 

selection criteria, use cases, policies, a rough “software thesaurus” to provide terms for organiz-

ing a software collection, and a variety of practices and staffing models. Should an institution 

accept the challenge, here were some of the tools needed for the job.

	 Bearman found no signs of life for software archives. However, he took note of important 

work in related fields. His research revealed progress in archiving of machine-readable data 

files or archival documents such as email, as well as contributions to archival automation, an 

area familiar to him through his work at the Smithsonian. There was hardly an overabundance 

of these studies, yet at least there were reliable and informative publications. One of them was 

Margaret Hedstrom’s Archives and Manuscripts: Machine-Readable Records, a practical guide 

that had been published by the Society of American Archivists in 1984.5 Trained as a historian of 

technology and an archivist, Hedstrom was among the first U.S. archivists concerned with elec-

tronic records and data, first at the State Historical Society of Wisconsin (1979–1983) and then as 

director of the Center for Electronic Records at the New York State Archives (1985–1995). The 

interplay between digital archives and software collecting—or between documentation and soft-

ware—continues to the present, and Bearman addressed the relationship of these siblings in his 

report. He was at first skeptical about the relevance of progress in building data archives for the 

different problem of collecting software, primarily because methods for preserving data in the 

1980s involved a model of data migration that broke the connection between the original context 

of data creation and its eventual storage in a repository. 

	 Bearman’s remarks identified a tension between the goals and approaches of data archives 

and software archives. He was not, however, opposing work that emphasized documentation over 

software preservation. He was simply pointing out that these are different problems with differ-

ent solutions. He praised Hedstrom’s work and others in later issues of the Archival Informatics 

Newsletter and eventually collaborated with her on several publications and projects. The point 

was (and remains) that archives, libraries, and museums that chose to build collections for the 

history of computing and its impact faced a multifaceted challenge. They would have to develop 

new practices for assessing, collecting, and preserving in numerous and diverse formats and 

nuance these practices to account for different use scenarios for documents, data, and software. 

Hedstrom and Bearman provided one argument for linking software archives and digital records 

in a report coauthored in 1993: “Indeed in the electronic age, custody of archives may require the 

on-going maintenance of a range of hardware and software and continuing migration of both data 

and applications, both of which activities are never ending and very expensive.”6 In other words, 
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use of historical documents in digital form may require access to historical software. Writing in 

the late 1980s, Bearman’s case for software archives rested on a simple proposition for the digital 

archives and libraries of the future: The more participants, the merrier.

	 Attention to the problem of software preservation took off during the 1990s. There prob-

ably are several explanations for this, but the deluge of commercial microcomputer software 

published during the 1980s surely played a leading role in awakening institutional repositories 

such as libraries and museums to the problem of software preservation. A specific moment for 

this awakening might have been the symposium organized by Columbia University called “Pres-

ervation of Microcomputer Software” that took place in March 1990 at Columbia’s Arden House 

Conference Center in the Catskills. The invitation to participants noted that the proposed topic 

of “Planning a Center for the Preservation of Microcomputer Software” had become “necessary 

and urgent.” The conference addressed topics such as a consortium of collection centers, the 

establishment of standards and techniques for migration and preservation of electronic data, 

collecting strategies, and technical problems with executing historical software.7 

	 In his paper on the proposed centers, Bernard Galler addressed the kinds of materials that 

would “ideally [be] available for future study” in a collection devoted to the history of microcom-

puter software:

•	 executable code, including the complete environment (hardware, operating system, periph-

eral devices, and so on) to run it 

•	 source language statements, preferably in machine-readable form but at least on paper 

•	 enough of an environment so that executable code could be produced from the source code, 

if needed, for whatever system is available for execution 

•	 representative code (source and executable) for each distinct version that appeared and that 

received a distinctive name or label 

•	 user documentation, as supplied by the creator or vendor 

•	 program logic documentation, as much as is available 

•	 advertising/marketing materials 

•	 environment specifications for both creating and running object code 

•	 user statistics, both numbers of users and their profiles

This is a comprehensive list, running the gamut from source code to executable software and 

operating environment and on to documentation, marketing, and evidence of use. Galler must 

have known that this would be a tall order for any repository that one could imagine in 1990; 

he wrote that “as always, what can be saved will depend on the cost of acquisition, and on the 

priorities assigned to the kinds of information, just as with the product as a whole.”8 The Arden 

conference did not result in the creation of such a center, and Bearman described the papers as 

“largely disappointing” in a review.9 However, the conference did spur a subsequent project that 

drew upon its energy: a proposed National Software Archives (NSA). The NSA proposal arose 

out of a series of meetings convened by David Allison of the Smithsonian Institution’s National 
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Museum of American History. The participants included collection curators, historians, and 

representatives from several companies (Apple, Microsoft, Hewlett-Packard, WordPerfect). The 

NSA meetings reviewed many of the issues that had been vetted in Bearman’s report and the 

Arden conference, adding participation by software developers and the notion of surveying, 

identifying, and marking materials held by developers and other institutions for eventual de-

posit in the NSA. Yet it failed to produce an active collecting program. The same could be said 

of a similar effort by a Software Task Force of CBI, completed in 1998.10 These initiatives raised 

provocative issues about software archives, but they did not provide a model for building col-

lections of historical software.

	 One of the papers at the Arden conference noted that future historians of computing would 

require access not just to “the numerous species of academic and business software;” it proposed 

that a “Center for the Preservation of Microcomputer Software” also include “software for such 

functions as games, entertainment and personal financial management.”11 This comment was pre-

scient because the road into institutional repositories was paved with packaged consumer (micro-

computer) software and digital games. Of course, there are other important classes of software and 

many domains other than personal use, ranging from computer science and academic software to 

business and military applications. Also, it is easy to name media used historically for data storage 

and software execution, such as punch cards, paper tape, and magnetic tape, that one will not run 

across in a collection of floppy diskettes, game cartridges, and optical discs associated with con-

sumer software. The emphasis on consumer software in the first historical software collections to 

land in repositories thus provokes a question: Is there a rationale for “preferring” these kinds of 

software objects in libraries and museums, or was it just an accident of collecting history? 

	 Two software collections will help us to consider this question. The Machine-Readable Col-

lections Reading Room (MRCRR) and the Stephen M. Cabrinety Collection in the History of 

Microcomputing were made available to researchers by the Library of Congress and the Stanford 

University Libraries, respectively, under rather different circumstances and at different ends of 

the 1990s. Both collections were substantial and consisted primarily of software in the categories 

of microcomputer software intended for consumer use, including games and various forms of 

entertainment and educational software. They were, as far as I know, the first major collections 

of historical software that researchers used in controlled reading rooms, that is, within the walls 

of traditional research repositories. To the extent that these collections represent the first wave of 

software collecting in the United States, their acquisition emphasized specific kinds of software 

for specific classes of computers. This specificity, in turn, shaped a conception of not just the soft-

ware object itself but also how software was organized, packaged, and documented and, in turn, 

how institutions would describe, preserve, and exhibit it. And yet collections consisting primarily 

of “software for such functions as games, entertainment and personal financial management” 

could document only a slice of software history. They omitted important categories of academic, 

scientific, and business software; computing environments other than microcomputer platforms 

and game consoles; and means of distribution other than retail stock (Figure 1).
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1. 
Library of Congress software reading room notice, 1998. Source: Lowood Papers, Stanford. Courtesy of Department of Spe-
cial Collections and University Archives, Stanford University Libraries, Stanford, California.
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	 In his annual report for the fiscal year ending 30 September 1988, the U.S. librarian of Con-

gress, James Billington, described a new project of the library:

In July the Library opened a new reading room, the first of its kind in the nation, as a one-

year pilot project. The Machine-Readable Collections Reading Room is intended to be a 

facility for the study of the design, history, and documentation of software and information 

data files. It focuses attention on the Library’s continuing program to acquire, catalog, and 

make available to researchers materials in this format. It brings these items together physi-

cally and serves to under score the significance of traditional library materials formatted in 

new technologies to contemporary society.12

	 The Library of Congress (LC) is the copyright deposit library of the United States, but 

its software collection in 1988 had been acquired mostly by other means, such as donations, 

exchanges for copyright registration (not the same process as deposit), and purchases. Indeed, 

the MRCRR collection featured items acquired by several LC divisions, from Science and Tech-

nology to Rare Books and Special Collections. “Machine-readable materials” had been collected 

since at least the early 1980s by these units, and three different LC committees had considered 

various aspects of the collection of these materials by 1987.13 Mandatory deposit had recently 

been proposed and was still under discussion, with noteworthy resistance from the software 

industry. In light of the contentious matter of copyright deposit, it is worth noting that repre-

sentatives from Apple, the Association of American Publishers, IBM, the Software Publishers 

Association, and other industry organizations attended a meeting held in May 1988 to discuss the 

operations of the MRCRR and attended a ribbon-cutting ceremony to launch the project after the 

meeting.14

	 The collection consisted of “executable programs” and “data” on “microcomputer or CD-

ROM discs” and “video discs.” Representative titles ranged from productivity titles such as bib-

liographic managers (ProCite, Sci-Mate) and word-processing software (MS Word, WordPerfect, 

WordStar) to reference databases (Oxford English Dictionary, ABI/Inform) and even a category 

for “windowing” (MS Windows, TopView). Only one entertainment title (arguably) was included 

in the MRCRR information flyer out of roughly 70 titles: Flight Simulator.15 The entire collection 

comprised 1,419 IBM-compatible and Macintosh titles, with the largest number of titles, 861, 

having been acquired as of July 1989 by copyright registrations between 1978 and 1989.16 The 

collection and the service registered a serious tone and purpose. Machine-readable materials 

could be retrieved, handled, and installed only by library staff. A columnist for the Computer Sys-

tem News reported in January 1989 that policies enforced in the room were set to mollify industry 

concerns about copying through access to software acquired by the proposed mandatory deposit. 

An MRCRR librarian cited “limitations on the use of software programs,” noting that “we don’t 

allow people to do their taxes here or write papers.” The author commented that “the librarians 

spend a lot of time looking over patrons’ shoulders, making sure the rules aren’t broken.”17 It is 

difficult to rectify the lofty goals of studying the “design, history, and documentation of software” 
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with the wrangling over copying of software and copyright deposit that constrained the reading 

room’s policies and, clearly, put a damper on research. 

	 A report issued in January 1990 summarized what the Library of Congress learned from 

its yearlong experiment with providing access to software. The report called for the library to 

“expand the scope of the collections to include more sophisticated and expensive titles that are 

leaders in their areas.”18 It identified areas such as “computer-aided design/manufacturing, image 

processing, mathematics, expert systems and full-text optical disk publications.” Today, about 25 

years after the conclusion of the MRCRR pilot project, the current overview of computer files at 

Library of Congress notes an increase from the approximately 1,500 titles held in 1988 to more 

than 88,000 items, most of them in the Humanities and Social Sciences Reading Room. The 

collection scope and formats collected have not changed much, although the materials in the cur-

rent collection “are usually PC compatible.” The original goal of supporting work on the “design, 

history and documentation” of software has not resonated strongly with the services eventually 

implemented for the Machine-Readable Collections, but it has not been entirely absent either. 

The Humanities and Social Sciences Collection has collected “sample software products” se-

lected “for their representation of the industry and as archival artifacts to represent computer and 

software development.” These samples include software intended for use on operating systems 

and devices that are not included in the collecting policy of the Machine-Readable Collection.19 

Responsibility for preservation of roughly 3,000 entertainment and related educational titles in 

the collection has been assumed by the Moving Image Section, following its strong commitment 

to the history of media.20

	 The Cabrinety collection aligns neatly with patterns of collection building that have for cen-

turies brought private collections from the idiosyncratic to the monumental into museums and li-

braries. Stephen Cabrinety, the son of a DEC (Digital Equipment Corporation) executive, began 

collecting software as a teenager and steadily added to his collection right up to his untimely 

death in 1995, at the age of 29. He wrote programs and founded a company called Superior Soft-

ware. In 1989, two years after Bearman’s conclusion that no institution had yet begun to collect 

historical software and just as the Arden conference was being planned, Cabrinety set up the 

Computer History Institute for the Preservation of Software (CHIPS)—at the ripe age of 23. His 

mother later described the goal of CHIPS as being “to preserve all software, and as much hard-

ware as possible, so that future generations could visually see how the industry evolved.”21 In the 

CHIPS business plan completed in May 1989, Cabrinety reported that his collection included 

more than 18,000 pieces of software and 55 microcomputer systems. The plan also detailed staff-

ing (including historians of computing and a curator) and fundraising plans and anticipated an 

annual collecting budget of about $150,000. Finally, Cabrinety indicated a preference for locating 

the new institution in the Boston area, near Washington D.C., or in “the world’s single largest 

technological hotspot,” Silicon Valley (Figure 2).22

	 Less than a decade later, the CHIPS collection arrived in Silicon Valley. The Stanford 

University Libraries acquired it from the Cabrinety family in 1997, two years after Stephen’s 
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death. Shortly before the gift was finalized, a reporter for the Los Angeles Times marveled 

at the work of the youthful collector, noting that “one of the world’s largest vintage software 

collections is not housed in the Smithsonian, or the Computer Museum in Boston, or even 

the in-house museum at Microsoft Corp.”23 The remark is not inaccurate, but at the same 

time it misses the longstanding importance of personal collecting and private initiatives as 

cornerstones of institutional collections. The Cabrinety Collection at Stanford complements 

hardware and software with documentation such as publications, ephemera, messages and files 

downloaded from bulletin board systems (BBS), Stephen Cabrinety’s papers, and records of 

Superior Software and CHIPS. Like other collectors, Cabrinety also pursued specific interests 

within the larger framework of software history; for example, the collection is rich in various 

flavors of interactive books and “edutainment” titles, the areas in which Superior Software 

was active.24

Software as a Collection Object
Shortly after Stanford acquired the Cabrinety Collection, Doron Swade (coincidentally) con-

cluded that “despite the formidable obstacles that face a fully-fledged software preservation pro-

gramme, there is at least one modest but significant programme of software acquisition that is 

technically achievable and that has affordable resource implications—namely, software for PCs—

‘shrink-wrapped’ consumer software, as well as custom-written special applications software.”25 

As we have seen, libraries first dipped their toes in the waters of software collecting in exactly 

this way. This first generation of collections thus implicitly defined the historical software object 

as Swade predicted, that is, as executable software carried on a media format packaged inside 

a physical container, along with a few other inserts such as a manual, publisher catalog, or even 

extras such as the “feelies” included with Infocom’s games.

2. 
An artifact from the CHIPS collection. Courtesy of Stanford University Libraries.
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	 As we consider the ways in which cultural institutions collect, curate, and preserve software 

artifacts, both material and virtual, it is worth asking when software became an object or artifact 

in the sense of something that might find its way into a repository such as a museum or library. 

Today, we speak easily of software in terms that fit the parlance of artifact curation. Similar terms 

have been employed in other contexts such as programming for decades and allowed for slippage 

between the virtual and the material. To give only two examples, “object-oriented” programming 

emerged during the 1960s and was followed by the graphical interfaces of the 1980s that trans-

lated programs and file directories into a system of visual icons that represented trashcans, file 

folders, and other office objects on a computer display. Notions of software as an object or artifact 

have since proliferated. The distribution of consumer software (including games) accompanying 

the rise of home computers, personal computers, and videogame consoles opened up the possi-

bility of speaking of software as an artifact with reference to actual physical items such as floppy 

diskettes and ROM cartridges, as well as retail packaging. In recent years, distribution units, 

including games, apps, and entertainment media, have joined the mix of “objects.” Of course, 

all of these notions are relevant for libraries, museums, and other cultural repositories already 

possessing or hoping to acquire collections of historical software.

	 Despite having these reasons to talk about software at least potentially as a collection ob-

ject, there is little evidence that anyone did that before the mid-1990s. As we have already seen, 

there was not much institutional collecting to encourage this manner of speaking. Moreover, it 

seems likely that museum curators and librarians initially resisted the idea that software could 

be considered as a collection object. Swade in his 1998 essay has carefully studied the hurdles 

an “object-centred culture” in museums put before software preservation, considering them at 

one point as “philosophical misgivings about the materiality of software” in institutions created 

to preserve physical objects.26 The words “object” and “artifact” do not appear in Bearman’s 1987 

report about collecting software, although he does suggest that the “transformation of software 

into a consumer product” is a historical topic of concern to the software archive. Still, Bearman 

stresses that a software archive museum is about software history, which requires documentation 

but does not necessarily require the operation or even ownership of historical software. Con-

versely, a software library “has as its sole purpose the provision of software for use,” not software 

history per se. In other words, software archives do not need to collect software objects. As for 

the early collections, Cabrinety refers to “hardware and software artifacts” in the 1989 CHIPS 

business plan, and he frequently uses the word “artifact” throughout the document. 

	 Before turning to the place of software in the historical archive, it will be helpful to say a 

few more words about terminology. The early Library of Congress reports use terms like “titles,” 

“collection of software,” and “files.”27 When did software become an artifact or collection object? 

If we turn to Google’s NGram viewer, we can generate trend lines for the use of terms such as 

“digital object” and “software artifact” in Google’s huge corpus of works published between 

1980 and 2008. This resulting visualization (Figure 3) suggests two tentative conclusions. The 

first is that use of “digital object” emerged during the mid-1990s and then increased rapidly. 
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Looking at occurrences of this term shows that it was associated with writing about digital li-

braries, archives, and preservation or related technologies such as the “digital object identifier.” 

In other words, we are dealing here with the vocabulary of data preservation, digital archives 

and documentation activities, rather than software preservation. An example in this context is 

Ross Harvey’s “From Digital Artefact to Digital Object,” published in the proceedings of a con-

ference on digital preservation sponsored by the National Library of Australia in 1995. Harvey 

specifically deploys the term “digital object” to describe a method of preserving digital data. His 

topic is “efforts toward migrating the data (or digital ‘object’) to new systems as they are intro-

duced,” which he contrasts to methods that emphasize preserving original artifacts, meaning 

media formats such as optical disk.28

	 The second conclusion is that the term of art adopted by digital libraries and archives is 

“digital object.” As already noted, this term’s popularity has grown significantly over the past 

two decades. Roughly concurrently, the term “software object” has declined in use, despite its 

longer history of being connected to the “object-oriented” programming vocabulary. At least this 

is what the Ngram viewer tells us. Related terms such as “software artifact/artefact” and “digital 

artifact/artefact” have also become more popular, especially since the turn of the century. It seems 

we are becoming more comfortable with speaking of software as an artifact, and conversely, in 

contemporary speech our artifacts do not have to be material objects. The proliferation of digital 

libraries, archives, repositories, commercial stores and other collections of software and data has 

encouraged our general acceptance of virtual artifacts. Computing technology long ago inflected 

the meaning of “virtual” to mean something that does not physically exist but is made by software 

to appear as if it did exist. Consider “virtual memory,” a term that goes back to the 1950s. The 

popularity of terms like “digital object” and “software artifact” in more recent years reflects the 

growth of stores of data and software as much as it has benefited from their increasing importance 

for cultural repositories. These institutions considered how to design and build digital libraries 

3. 
Use of “digital object” and related terms in Google’s corpus of published works. Created by Henry Lowood using Google’s 
Ngram Viewer.
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and archives as their personnel (curators, technical staff, etc.) began to realize the necessity of 

considering the kinds of collections and objects that would be collected and, so to speak, fill vir-

tual shelves and boxes. The pace of this work was accelerated by the increasing accessibility of 

the web after the release of the Mosaic browser in 1994 and the National Science Foundation’s 

Digital Libraries Initiative, launched in the same year. It is hardly surprising that cultural repos-

itories both old (Library of Congress, National Library of Australia) and new (Internet Archive) 

focused their collective attention at about the same time on what came to be seen as digital 

objects and artifacts. These intellectual shifts during the mid-1990s helped shape institutional 

commitments that included building and preserving software collections.

Software Archives or Software Libraries?
The early software collections and the rise of digital libraries during the 1990s both begged an 

essential question: What do we collect, and what do we do with these collections? Jim Bennett’s 

observation about museums that collect scientific instruments applies equally to software collec-

tions: “One obvious thing to remember about museum collections is that they show you not what 

there was but what was collected.”29 Scholarly research, repository practice, and collection cura-

tion all are addressing this question of what to collect in one way or another. Studies have been 

devoted to a range of issues from low-level forensics and data capture to institutional frameworks 

for acquisition, data transfer, description, and use. They are also redefining curatorial work as it 

pertains to digital collections. 

	 The writing and projects that paced the emergence of software collections did not resolve 

several tensions. The first was highlighted in Bearman’s 1987 report and contrasted data preser-

vation as a documentation or archival activity and software libraries. A second tension reflected 

different priorities in forms of software collecting. One line of projects led from electronic records 

to web archiving and concentrated on the collection, organization, and migration of vast stores 

of data and documentation, often created and stored in systems built around larger comput-

ing systems: mainframes, minicomputers, or the Advanced Research Projects Agency Network 

(ARPANET)/Internet. A second, often independent line produced collections that consisted 

mostly of discretely packaged software produced for use on microcomputers, personal comput-

ers, home computers, and game consoles. These two categories of software artifacts produced 

different ideas about repository design and curatorial activity. Collections featuring one or the 

other required different approaches toward curation, preservation, access, and use. The Internet 

Archive and the Department of Special Collections at Stanford, where the Cabrinety Collection 

is housed, are quite different operations—complementary rather than oppositional, but still dif-

ferent (Figure 4).

	 Why collect historical software at all? Since Bearman began to write about this question, 

responses have appealed to the profound impact of computers, software, and digital data on vir-

tually every aspect of recent and contemporary history. Bearman, as we have seen, defined the 

“software archive” as serving the history of software as a research field, thus distinguishing it from 
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the software library. Hedstrom reported, however, that those present at the Arden conference “de-

bated whether it was necessary to preserve software itself in order to provide a sense of ‘touch and 

feel’ or whether the history of software development could be documented with more traditional 

records.”30 More recently, David Allison of the Smithsonian’s National Museum of American His-

tory has suggested that “supporting materials are often more valuable for historical study than code 

itself. They provide contextual information that is critical to evaluating the historical significance 

of the software products.”31 He too argues that operating historical software is not an aspiration 

in institutions that serve a historical mission. The needs of historians, of course, do not account 

for all potential uses of software collections. Computers have been a fact of life for more than a 

half century. As a result, archives collect historical records in digital formats, and the separation 

between data archiving and use cases for historical software is not as absolute as a casual reading 

of Bearman’s report would suggest. (Indeed, a close reading shows that he respected their connec-

tions.) Yet institutional priorities must be set and resources allocated. As a result, curators prioritize 

among collections and services that provide access to documentation of software history and those 

that deliver the experience of using historical software. It is not (and cannot be) a necessarily binary 

choice between software archive and software library, but choices still have to be made. 

	 More than a decade ago, I wrote an essay called “The Hard Work of Software History.” I 

tried to come to grips with some of the then-emerging difficulties that cultural repositories were 

4. 
An example of documentation accompanying historical software. Courtesy of Department of Special Collections and Univer-
sity Archives, Stanford University Libraries, Stanford, Calfiornia.



Software Archives and Software Libraries� 81

beginning to face with collecting software.32 The positions I have described above that separate the 

software library and archives as methods for preserving software history struck me then as being 

“partly stuck on different institutional and professional allegiances to the preservation of objects, 

data migration, archival functions, evidentiary value, and information content. … these issues 

are not likely to be sorted out before it is necessary to make serious commitments at least to the 

stabilization, if not the long-term preservation, of digital content and software.”33 Rapid changes 

in media formats and computing technologies add to the uncertainty associated with the future of 

software collections. For example, it remains to be seen whether practices associated with collect-

ing packaged software will provide useful methods for collecting software distributed via stream-

ing and software-as-a-service delivery models.34 In addition to technological evolution, licensing 

and legal restrictions on both collecting activities and access to collections further constrain cura-

torial work in this area. The bottom line is that it is not yet clear how curation of software objects 

and the particular experiences associated with the virtual spaces created by software—whether 

a game or the white space facing me on the screen as I write these words—will be captured by 

established library or archival collecting, cataloging, exhibition, and preservation activities. 

	 In May 2013, the National Digital Information Infrastructure and Preservation Program at 

LC held a conference called “Preserving.exe” with the goal of articulating the “problems and 

opportunities of software preservation.” In my response to the conference included with the LC 

report issued a few months later, I described three “lures of software preservation,” by which I 

meant potential pitfalls as we begin to connect the dots from software collections to digital repos-

itories and from there to programs and services such as access to collections and exhibitions.35 In 

a nutshell, the lure of the screen is the idea that what counts in digital is what is delivered to the 

screen. With respect to software preservation, the problem comes up when judging success in de-

livering significant properties of software entirely by auditing interaction with surface properties 

(graphics, audio) and not accounting either for the variable and contextual nature of these proper-

ties or the invisibility of software abstraction levels and procedural aspects of software design such 

as game mechanics in video games. The second lure is that of the authentic experience, which I 

consider the mandate that digital repositories at a minimum must be careful to not preserve digital 

objects in a manner that would interfere with re-enactment of such experiences as are deemed 

historically authentic. To put it bluntly, I believe that there is no such thing as unconstructed and 

pure authenticity in this sense, and it is a waste of resources to seek to provide it. 

	 Finally, the third lure is the lure of the executable, and it will conclude my reflections here 

on historical software collections. As we have seen, the kind of historical resource that Bearman 

called a software archive had a head start on software libraries. The primacy of documentation 

was implied in the AFIPS brochure, and it was already being collected by CBI and, indeed, in 

corporate and university archives by the late 1970s. The first repository collections of software 

followed more than a decade later and more than 20 years on remain few and far between. As we 

have seen, these collections have generally been restricted to a limited set of software categories 

and platforms, and indeed, curators cited above have been skeptical about the potential for much 
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expansion beyond them. Indeed, some have doubted the value of maintaining software collec-

tions for historical research at all.

	 So what is the value of historical software for the history of software? An attractive version 

of the end product of software preservation is the well-maintained library of executable historical 

software. The work to reach that product involves a series of tasks from selection and collection 

through ingest and migration from original media and creation of technical and rights metadata, 

as well as provenance, descriptive, and contextual information. This workflow is at the heart of 

what has been called the life cycle model for digital preservation, the most influential statement 

of which has been that of the Digital Curation Centre.36 Although the model says little about 

related physical components such as packaging, manuals, and box inserts, archiving these compo-

nents can be considered a separate problem, and as projects at the Strong Museum, University of 

Texas, Stanford University, and elsewhere indicate, this work is underway. The point for software 

preservation is that the lure of the executable compels digital repositories to focus on building 

collections of verified historical software that can be executed on demand by researchers. This 

lure could well function for some institutions as a holy grail of digital curation with respect to 

software history.

	 What could possibly be wrong with this mission, assuming that it can be executed? I have 

argued on several occasions that there are at least three problems with the software library. Per-

haps the good news is that they are problems of omission, rather than commission. The first 

problem is that software does not tell the user very much about how it has previously been used. 

In the best case, such as previously installed software available in its original use environment 

(not a common occurrence), application software might display a record of files created by users, 

such as a list of recently opened files found in many productivity titles like Microsoft Office. The 

more typical case for a software library, however, will be that software is freshly installed from the 

library and thus completely lacking information about historical use. 

	 The second point might best be illustrated through the example of virtual world software, 

such as Second Life or a game world such as World of Warcraft. Let us assume that we can cap-

ture every bit of historical data from a virtual world server and then successfully synchronize all 

of these data with carefully installed (and patched) software; we can reverse engineer authenti-

cation controls, and we can solve the complex problems of ownership and rights. We will have 

accomplished an act of perfect software and data capture, and of course, we will then preserve 

all of the associated digital objects. Now we can create a historical time machine through which 

we can fly through the virtual world at any moment in time of its existence. Of course, historians 

would applaud this effort, until it becomes evident that all we can do is tour an empty world. In 

the absence of historical documentation that helps the researcher to understand motivations and 

reactions of the participants, the payoff will be limited. Such documentation generally will not be 

found in the recreation of such a virtual environment, content without context.

	 The third point and perhaps the most fundamental is that the documentation that is a prereq-

uisite for future historical studies of software and digital media such as games and virtual worlds 
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is simply not located in software. It is, in a sense, on both sides of software: the design materials 

(including source code) that document software development and the archives, both digital and 

nondigital, that document context, use, and reception. It is important to understand that this is not 

just a problem for historical research. It is also a problem for repositories, whether they are doing 

the work of digital preservation or addressing the needs of a researcher requesting access to this 

software. If contextual information such as software dependencies or descriptions of relationships 

among objects is not available to the repository and all the retired software engineers who knew 

the software inside and out are gone, it may be impossible to get old software to run. 

	 In Best Before: Videogames, Supersession and Obsolescence, James Newman argues that 

a host of publishing, retail, marketing, journalistic, and other practices have cultivated a situa-

tion “in which the new is decisively privileged and promoted and the old is constructed either 

as a benchmark by which to measure the progress of the current and forthcoming ‘generation’ 

or as a comprehensively worn out, obsolete anachronism to be supplanted by its update, supe-

rior remake or replacement.”37 Newman is not optimistic about software preservation. This does 

not mean that he is pessimistic about every possibility for historical preservation, however. In 

a section of his book provocatively called “Let Videogames Die,” he argues that a documentary 

approach to gameplay might be a more pragmatic enterprise than the effort to preserve playable 

games. We might generalize his conclusion about digital games to other classes of software. New-

man calls for a “shift away from conceiving of play as the outcome of preservation to a position 

that acknowledges play as an indivisible part of the object of preservation.”38 Stated more gener-

ally, software preservation is not about preserving historical software for enactment as historical 

research and even less about reenactment of past experiences. Rather, it provides a method for 

producing documentation about contemporary use for (later) historical purposes. The lure of the 

executable is not just about following a false idol; recognizing the lure leads to acknowledging 

that the library of executable software can at best be only a partial solution to the problem of 

software preservation.

	 Software archives or software libraries? That is the question. Is it nobler to collect documen-

tation or to suffer the slings and arrows of outrageous software installations? The case for docu-

mentation is strong. The consensus among library and museum curators (including myself) who 

have taken a side is that historical documents are a stone-cold lock to be a winning prerequisite for 

future historical studies of software. Useful records of software could be virtually anything from 

source code to screenshots. Moreover, historians will not be the only users of these documents. 

There is even a software library case to be made for software archives: The success of software 

preservation will depend on the availability of historical documentation. Documents provide con-

textual information that can be included in transfer protocols or descriptive metadata and inform 

long-term preservation activities by documenting software dependencies and relationships among 

objects or clarifying ownership of intellectual property. Documents tell us how software was used 

historically, and they can also help tell us what we are supposed to do or what we are looking at 

when operating ancient software on long-defunct operation systems or platform. 
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	 And yet every argument for software archives leaves room for preserving software, whether 

as artistic or cultural content, for technology studies or for forms of scholarship that treat aspects 

of digital games and virtual worlds as authored texts or artistic objects. Indeed, this tension be-

tween the collected artifact and archival documentation will be familiar to curators working with 

other object and media formats. The difference posed by software collections is that preservation 

of the software “artifact” necessarily involves commitment to a long-term cycle of data curation 

activities, rather than object conservation. It is an expensive proposition, involving skills, ap-

proaches, and technologies quite different from those required for the conservation of physical 

artifacts. The problem of institutional commitments to software collections thus ultimately boils 

down to the identification of relevant use cases and the allocation of resources. It is virtually 

impossible that any one institution will be able to do it all, but every collecting institution com-

mitted to supporting software history should at least try to do something. 
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CHAPTER 6

Interpreting the Collection and  
Display of Contemporary Science  
in Chinese Museums as a Reflection  
of Science in Society

This chapter remarks on gradual changes� in prac-

tices of collection and display of science in China. 

It begins by investigating the roots of science col-

lecting that stem from the nineteenth century. It 

proceeds to inspect the years from the division 

between the People’s Republic of China (hereafter 

China) and Republic of China (hereafter Taiwan) 

in the 1950s, over the Cultural Revolution into the 

boom in museums after 1980. In the final overview 

of the present state of science museums in China, 

one national science museum and one provincial-

level science museum are exemplified to explain 

differences in science museums occupying different levels of the museum hierarchy. The analy-

sis focuses on exhibition design and audiences and is part of a larger ongoing doctoral project on 

contemporary science museum culture in China and the United Kingdom; collecting is discussed 

mainly in terms of cultural heritage and the inclusion of oral records.1

	 Objects can be collected for the purpose of preserving the past for the benefit of the fu-

ture. In a way, even demonstrations of innovative science in contemporary museums can be 

interpreted as a collection of modern-day ideas for the benefit of future generations. This notion 

appears to be the main idea behind the collections in contemporary Chinese science museums. 

Where collecting was once a pastime available only to the elite, stakeholders of the twentieth 
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and twenty-first centuries in China have propagated the “taking over” of artifact collection by 

museums as being to the benefit of a larger number of people. Furthermore, exhibitions of col-

lections after 2000 mainly apply ideas whose realization is, paradoxically, limited only by the 

abilities of existing science and technology. The commission-based and exhibition-driven col-

lecting that is common in Eastern and Western science museums today allows scientific content 

(textbook-style information) to be presented in a scientific context (interactive exhibits of both 

high- and low-tech varieties). The basic idea of collecting remains the same as that of the earliest 

collectors of natural history and philosophy, but the collections themselves cater to an audience 

of their own time.

	 Since the first Chinese museums opened in the late nineteenth century, collecting practices 

of science in the Chinese-speaking world have been influenced by the historical notion of a 

European origin of science. This influence can be seen in gradual changes in naming practices, 

patterns of collection, the identity of stakeholders, and the social and political role of the museum 

as a didactic method in the Chinese-speaking world. After 1948 the sciences of the past held a 

venerated place in history museums. China’s investment in new science museums and centers 

since 2000 has reinforced the stark distinction between the sciences of the past and the sciences 

of the present. Although both are sources of power and pride, reformers and traditionalists, the 

Communist Party in China and the Guomindang in Taiwan, venerate past and present sciences 

differently and in separate venues. Both Taiwan and China equally represent the past with ar-

tifacts, whereas modern science is displayed conceptually for didactical purposes. Rather than 

drawing on a body of curatorial expertise and existing objects, science exhibitions are “designed.” 

They display objects in a neutral space, unconnected to local or contemporary concerns to delin-

eate the universally valid essence of natural sciences.

	 Throughout the Chinese-speaking world, naming practices are informed by a variety of 

ideals rather than revealing the actual structure of collection and display. Stakeholders often 

choose the name “museum” (bowu guan 博物館, literally “hall for the erudite study of objects,” 

abbreviated as “science and technology museum,” kexue jishu guan 科學技術館), implying a 

relation to the twentieth-century Western idea of displaying a collection. The favored science 

center model is actually a departure from the “traditional” museum.2 Structurally, these science 

museums are fashioned on the twenty-first-century North American model of the Exploratorium. 

This approach is particularly evident in the booming science museum culture (kexue bowu guan 

科學博物館) and science and technology museums (kexue jishu guan 科學技術館) that have been 

established since 2002 in China after a law to popularize science passed by the 9th National 

People’s Congress.3 

	 Collecting in the Chinese-speaking world is generally defined by a limited number of stake-

holders. Although scientists and scientific institutions held major stakes in collecting between 

the 1950s and 1970s, throughout the twentieth century state actors dominated public museum 

culture. Politicians defined the agenda of modern-day exhibitions that were then designed and 

implemented locally by assigned administrators. Then objects were sourced and delivered. In 
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museums, exhibitions were built as permanent galleries. The designs chosen in the competitive 

calls for exhibitions in post-2010 science museums demonstrate that Chinese political stakehold-

ers prefer advanced technical methods of display that encourage interaction between the visitors 

and the exhibits, which in turn can reassure the public of the progressiveness of the exhibited 

science, technology, and China’s approach to it. Individuals or industries that began to engage 

in exhibition culture commercially after 2000 thus far rarely address scientific or technological 

contexts. 

	 Education has been a key to late twentieth- and twenty-first-century collection practice, 

especially in the case of governmental bodies and state-funded science museums, such as the 

two case studies discussed below. Scientists feature in this arrangement as the purveyors of re-

quested information that is then communicated to the public via the museum. Academic dis-

courses in China consider a museum’s task of collecting and exhibiting to be accomplished when 

the audience responds positively to the prime educative goal of the Popularization of Science and 

Technology law that aims at improving China’s standing in the basic natural sciences of physics, 

mathematics, and chemistry and in life sciences.4 

	 How then do Chinese science museums acquire their collections? At the Zhejiang Science 

and Technology Museum (浙江省科技館, hereafter ZJSTM) the provincial-level science museum 

of Zhejiang Province situated in its capital Hangzhou, a group of decision-makers consisting of 

the directorial staff of the science museum together with members of the regional science associa-

tion, meets and draws out plans for each of the galleries in the museum.5 The plan is then fulfilled 

by external designers, with each revised proof overseen by the attendees of the aforementioned 

meeting. Decision-makers and gallery developers do not work in the museum on a daily basis 

and are therefore not necessarily aware of public engagement levels.6 As educational institutions, 

science museums are free of charge. Stakeholders indeed struggle with their responsibilities 

toward the public and grapple with visitor numbers because these “designed” fixed exhibitions 

do not invite repeat visits. The majority of these permanent galleries run the risk of being out of 

date relatively quickly as science advances. Museums collect “science” then only as an accidental 

by-product driven by the constant necessity to create new shows. Systematic collecting for the 

purpose of preservation is not the goal. 

Political Competition: The Roots 
of Science Collecting in China 
and Taiwan in the 1950s
Research on science and technology collecting in China is still in its infancy, as is the institution 

of the science museum itself. Studies on museums up until the late 1990s, emphasizing the break 

with China’s imperial traditions, suggest that natural history museums (ziran lishi bowu guan 

自然歷史博物館) such as the Zhendan Museum (Zhendan bowu yuan 震旦博物院) installed in the 
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year 1872 by the Jesuit French Asian Society in Shanghai, were the modern science museum’s 

natural ancestor.7 At that time, research institutions were already displaying geological collec-

tions within classificatory schemes of “Western learning” (xixue 西學) or “science” (kexue 科學). 

Previous studies have mainly discussed this within the context of a growing public understanding 

of the science (kepu 科普) of the West, imperialism, and capitalism during the prewar era.8 In this 

vein, Lisa Claypool and Qin Shao inquired into the first domestically founded—and funded—

natural history museum in China, established in 1905 in Nantong, Jiangsu Province.9 

	 The late nineteenth- and early twentieth-century Chinese notion of science as the savior 

of the nation and a source of power and pride carried through during the establishment of the 

Communist government of China on the mainland and the Guomindang government of Taiwan. 

Competitive claims over international standing and political legitimacy made by the Communist 

Party and the Guomindang heavily influenced the historical formation of collections and their 

displays after 1948.

	 The politicization of science collecting and display continued. From 1948 onward China 

and Taiwan both collected and showcased scientific and technological achievements of an ever 

more distant past in history museums to underline the legitimacy of their rule over the Chinese 

civilization. Scientific achievements featured in archaeological and art exhibitions.10 At the same 

time natural history and science museums were tailored as educational sites for students and the 

public so they would learn modern sciences and technologies and thus increase the wealth and 

power of the country. 

	 Political legitimacy figures prominently in the science-collecting politics of Taiwan. When 

the Guomindang government launched an extensive program in the 1950s, it claimed to be con-

necting and continuing a science museum culture active since 1900. The National Taiwan Mu-

seum (Guoli bowuguan 國力博物館) in Taipei Park, Taipei, originally established in 1908 and still 

located on the same premises, was turned into the “first modern museum” (diyi xiandai bowuguan 

第一現代博物館).11 It hosted over 23,000 items in 11 categories: geological features, plants, ani-

mals, ethnography, historical education, agriculture, forestry, hydraulics, mining, craftsmanship, 

arts, and trade. The museum disseminated 10,000 copies of their monthly newsletters throughout 

the province and placed them on public display. In 1956 the Guomindang government also es-

tablished an Exhibition Hall for Science Education (Taiwan kexue jiaoyu guan 台灣科學教育館) 

in Taipei city with the mission to popularize science throughout the country. The second floor 

of the four-story building hosted an exhibition of material sciences, and the third and fourth 

floors exhibited permanent collections. Since the 1980s a computer and information technol-

ogy section and life sciences have filled adjacent halls. After its relocation in 2003 to the Shilin 

District, it is now jointly managed with the Maritime Museum (Haiyang shengwu bowuguan 

海洋生物博物館) and the Communal Centre for Industry (Gonggong fuwu yewu 公共服務業務). 

In 1990 Wu Xiangkuang 吳湘匡 reported on 33 science museums in Taiwan, including multi-

ple research-oriented collections in academic institutions directly subordinate to the Education 

Ministry (jiaoyubu 教育部).12 
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	 Meanwhile, on the mainland, China conversely emphasized a break with imperial and re-

publican bourgeois traditions and a move toward modernity. Throughout the 1950s, the Commu-

nist Party in China increasingly opened private, research, and imperial collections to the public. 

Examples are the Hall for Geological Survey of Hunan Province (Hunan sheng dizhi diaocha suo 

chenlie guan 湖南省地質調查所陳列館), which was installed in 1927 for students and staff, and the 

zoo in Beijing, which was initially founded by the Qing government.13 Policy statements by the 

government of China from the 1950s onward emphasize science museums as “places resolving 

major research questions related to the national economy” (jiejue duiyu guomin jingji juyou zhong-

yao yiyi de guanjian xing de kexue wenti 解决對于國民經濟具有重要意義的關鍵性的科學問題).14 

Issues of public hygiene (weisheng 衛生), agricultural development (nongye 農業), and heavy 

manufacturing (gongye 工業) were exhibited. 

China in the 1960s to 1990s: 
Inquiring into the Sciences 
of the Past for the Future
Inquiring into the varying historical modes of science popularization, Lou Xihu 楼锡祜 distin-

guishes three major periods of science museums in China: 1950–1966, 1977–1990, and 1990 to 

present.15 In his scenario the period of 1950–1966 deserves only scant attention because during 

this period actors mainly attempted to overcome the cultural destruction that had hit China 

during the civil wars. However, we suggest the beginnings of later developments were initiated 

in this period. During the Great Leap Forward museums took on the baton of science popular-

ization for the prime purpose of educating. They informed visitors about the intricacies of tradi-

tional methods to melt iron or forecast earthquakes as one of the ways to advance the country to 

modernity. In 1958 a national committee was put in charge of the reconstruction of ancient sites 

of natural history museums in Shanghai, Tianjin, and Dalian. The committee promoted the need 

for the resurrection of the Beijing Zoo, for instance, for “the education of society” (shehui jiaoyu 

社會教育), advertising the site as a “second classroom” (di’er ketang 第二課堂). Collecting aimed 

at comprehensiveness to “illustrate the richness of things” (wu 物).16

	 The display of the archaeological site of the Peking Man at Zhoukoudian (周口店) exempli-

fies the huge impact of modernity debates. Soon after 1948, the Communist government shaped 

the museum to educate the population in Darwinian understanding of human evolution and 

to propagate political ideologies such as “labor creates humanity” (laodong chuangzao le ren 

勞動創造了人).17 The collecting efforts, by contrast, underline this era’s concern about political 

legitimacy. The Communist Party employed Peking Man as a political emblem for the persistence 

of Chinese ethnicity. When the bones of Peking Man were lost (it has never been clarified whether 

Japanese or Americans looted the remnants of Peking Man or they simply got lost in transit), the 

Communist government dispatched scientists to conduct further excavations that would help to 
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verify the early traces of human activity in China. The collecting continued even after 1966 into 

the Great Proletarian Cultural Revolution when another two skull fragments were discovered. At 

the height of the Cultural Revolution between 1972 and 1973, scientists excavated another Homo 

sapiens premolar. Some science and science collecting hence clearly continued despite political 

rupture and distress.18 

	 In general, however, the period of the Great Proletarian Cultural Revolution (wenhua da 

geming 文化大革命) between 1966 and 1976 marks a major rupture in the history of Chinese ap-

proaches to any kind of heritage. As Mao Zedong 毛澤東 (1893–1976) mobilized China’s youth to 

attack the “four olds” (customs, culture, habits, ideas), intellectuals and scientists were also prose-

cuted as bourgeois elements, and some scientific research came to a standstill. Politicians such as 

Zhou Enlai 周恩來 (1898–1976) could protect some places such as the Forbidden City in Beijing 

and its collection of astronomical instruments or clocks. Individual scientists such as the meteorol-

ogist and specialist in atmospheric physics Tao Shiyan 陶詩言 (1919–2012) continued their work 

privately and managed to safeguard books, scientific instruments, and institutional assets.19 

	 One immediate effect of the destructive activities of the Great Proletarian Cultural Revo-

lution period was an increased awareness of the value of heritage and history in the creation of 

national identity after the end of this era. Archaeology and China’s natural history as well as its 

technological achievements moved back into political purview. By 1977 the archaeologist Pei 

Wenzhong 裴文忠 (1904–1982) and the leader of the scientist committee Pei Lisheng 裴麗生 

(1906–2000) engaged enthusiastically on behalf of China’s natural science museums.20 The pros-

pering provinces of Zhejiang, Jilin, and Guangxi quickly established topical museums such as the 

National Silk Museum (Guojia sichou bowu guan 國家絲綢博物館) in Hangzhou City, Zhejiang 

Province.21 A national research institute for the popularization of science (Zhongguo kepu yanjiu 

suo 中國科普研究所) was established in 1994. 

	 But it was almost another decade before economic and ideological shifts brought another 

quantitative leap in science museum culture. On 29 June 2002, the National Committee an-

nounced a five-year plan to establish 200 new museums for the promotion of the hard sciences 

in China by 2020 “for the development of the sciences and technologies.”22 The annual report on 

the “National Scheme for Scientific Literacy” (Zhongguo kepu baogao 中國科普報告) aimed at 

raising the number of science museums from 250 nationwide in 2006 to 581 in 2010.23 Although 

China’s policies from the 1980s to 2000 targeted mainly applied sciences, the latest attempts to 

use science museums to popularize science are aimed explicitly at basic science research, an 

area that China’s leading politicians still identify as deficient in comparison to Europe and North 

America.24 In contrast, politicians are confident in China’s growing capacity in engineering and 

the production of high-end consumption technologies. 

	 Although the state features, indeed, as the most visible actor in collecting and display, pro-

viding resources for both science and museums, with the twenty-first-century economic shift and 

changing notions of heritage, collections of resources, books, and scientific apparatuses such as 

those Tao Shiyan gathered during the Great Leap Forward (Dayuejin 大躍進; 1958–1961) also 
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come into the purview of modern museum culture.25 As of 2014, private collectors are willing to 

share information on an individual basis, although public display of this part of contemporary 

history is still rare as these periods are politically sensitive. State bodies can lawfully appropriate 

or confiscate artifacts thought to be of national importance at any time.26 

Documenting Science in Twenty-First-
Century Chinese Science Museums
Current trends in Chinese state-supported science museums include a strong emphasis on 

educational hands-on activities for visitors. More emphasis is placed on featuring Chinese sci-

ence and what science could provide for humanity in the future. Science museums in China are 

something of a nationwide project for the state, with many new sites emerging in large cities, 

mostly provincial capitals, since 2000, following the trends created in three flagship museums: 

the China Science and Technology Museum (Zhongguo keji guan 中國科技館; CSTM) in Beijing, 

the Shanghai Science and Technology Museum in Shanghai, and the Guangdong Science Center 

(廣東科學中心) in Guangzhou. These state-supported science museums fit into a political and 

regional hierarchy, where the flagship museums in cities such as Beijing and Shanghai are at the 

top, the provincial museums are in the middle, and city-level museums are farther down. We em-

ploy two case studies: CSTM and ZJSTM. It can be shown that political agendas, new exhibition 

ideas, and designs begin in the top-tier museums and then trickle down the political structure to 

regional and local museum culture. Museum staff who generally have a background in science, 

science and technology studies, or the history of science aim at moving up the career ladder along 

such hierarchies.

	 Confronted with a tech-savvy public, China’s science museums on all tiers rely on interac-

tive high-tech displays of the most up-to-date science. Genuine objects such as the space suit 

of China’s first taikonaut, Yang Liwei 楊利偉 of the Shenzhen 5 mission, are a rarity, displayed 

by CSTM as a Chinese first.27 The aforementioned space suit is displayed in a gallery dedicated 

to astronomy and aeronautical engineering, with a moon landing theme even though Shenzhen 

5 was an Earth orbital mission. The theme is devoid of historical references to earlier, less suc-

cessful attempts or even historical references to China’s gunpowder and rocket sciences. Since 

Shenzhen 5, there have been five crewed missions (2003–2013, with plans for a sixth imminent 

and 20 unmanned space launches pending for 2016 alone), suggesting that the museum ties into 

a larger political agenda of promoting this area of research (Figures 1 and 2).28 

	 The current approach to science exhibitions combines the idea of science as a designed, 

purchasable event with the desire to display the most up-to-date sciences. Although the event 

character, emphasizing the universal validity of scientific ideas, does not cater to ideas of collect-

ing, the quick pace of change in modern sciences provides an important incentive for future prac-

tices. In science, new theories or facts, provided there is sufficient evidence, can replace older 

theories. Theoretically, this change should mean that a science museum’s exhibits can display 
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1. 
Taikonaut display at the China Science and Technology Museum. Photo by the authors.

2. 
Taikonaut display at the China Science and Technology Museum. Photo by the authors.
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the relevant background scientific theories even if the political and social landscape and public 

opinion on the relevance of science change. This aspect of social and political influence on sci-

ence museums in the East and West means that although they can showcase future innovations, 

they also preserve history for informational purposes. In the current climate, the flagship, CSTM, 

is beginning to keep documentation of its old exhibitions, creating a dossier-like record of past 

events at the museum. This is a standard procedure for museums in the West. Museums in China 

have long opted to completely discard previous exhibitions without any form of documentation 

after use. 

	 Current attempts to document exhibitions are motivated by a growing awareness of the 

historicity of the contemporary in a culture that ideologically tends to venerate the longue durée 

and most ancient traits. Actors remain aware of the politically hazardous implications of archiving 

contemporary or recent history, even though political relaxation and economic growth since 

the 1990s have contributed to making museum stakeholders want to showcase their previous 

achievements. In informal conversations, throwing away exhibits is also argued to be a waste of 

public resources, considering that they could be used again as temporary exhibitions. 

	 Farther down the museum hierarchy, the ZJSTM creates many exhibitions and galleries 

with permanence in mind, commissioning them externally by design using the ideas of a coun-

cil of top-level museum staff (assistant director and above) and relevant members of the local 

government. The latter spend little time in the actual museum. In these museums, temporary 

exhibition space is limited. 

Science Collecting in the Present Day:  
The China Science and Technology 
Museum in Beijing and the Zhejiang  
Science and Technology Museum  
in Hangzhou
The following arguments utilize CSTM and ZJSTM as case studies to give concrete examples of 

the work carried out in science museums of different “ranks” in the Chinese museum hierarchy. 

The CSTM belongs to the elite three flagship science museums, whereas ZJSTM occupies the 

position of a provincial-level science museum and as such takes on responsibilities beyond the 

museum walls, such as outreach programs delivering museum content to (usually) children in 

rural villages. Provincial-level museums are still increasing in number as the state aims to provide 

accessible science museums across the country: there are 22 provinces in China, and one of the 

latest provincial museums is the Xinjiang Science and Technology Museum (Xinjiang keji guan 

新疆科技館) in Ürümqi, the capital of the Xinjiang Uygur region in northwestern China. Note 

that the naming convention is consistent for all provincial museums.
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	 The ZJSTM is not as heavily promoted and funded as the national-level science museums 

but has defined public engagement responsibilities in its region. It groups itself in the same 

classification schemes as the CSTM, that is, as an institution with a future purpose and not one 

that caters to the memory of the past. Historical artifacts, including replicas, are few and far 

between—mere concessions to an audience that needs didactic support and emotional anchors 

to an otherwise global and universalized science. At CSTM the commissioned collection comes 

with a predetermined classification scheme. Currently, it appears that the collection strategy 

is only in the emerging stages, created a posteriori by the actual need to communicate ideas to 

the targeted audience. For instance, samples and models of emerging technology, ranging from 

3-D printed mechanical components to increasingly resilient man-made materials, dominate the 

scene and provide contextualizing objects meant to represent future science (Figure 3).

	 Science museums in the United Kingdom use this collection display method to link future 

achievements closely to their own past, whereas the Chinese equivalent emphasizes new in-

ventions and future ventures as features of a modern world to come. If modern sciences have 

any anchor, it is in the traditions of the nineteenth- and twentieth-century West, that is, western 

Europe and the United States, invoked by global hero figures such as Charles Darwin, Albert 

Einstein (1879–1955), and more recent Nobel laureates such as the American chemist Glenn T. 

Seaborg (1912–1999), who first isolated transuranium elements. The only Chinese individual in 

the gallery passage thus far is the aeronaut Yang Liwei. 

3. 
The 3-D printing exhibit at the China Science and Technology Museum. Photo by the authors.
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	 For this reason, we consider the exhibition development procedure in most Chinese science 

museums to be concerned primarily with theories and ideas. Its aim is display, and its approach to 

collecting is a combination of determinism and constructivism. It assumes that there is something 

to learn in the first place, then proceeds to search for this information, in contrast to classical con-

structivist ideas that claimed to furnish visitors with a comprehensive information landscape that 

they were invited to use to create their own ideas of the world.29 Local or historical anchoring is 

deemed unnecessary because the value of science is universal. More research has to be done to 

confirm the impression received, that this Chinese audience perceives the “value” of scientific 

and technological artifacts differently than a European one, but it appears as if, within the uni-

versalism of modern science, this audience perceives the artifact as incidental and illustrative and 

not valuable per se.

	 The method of acquiring objects is interesting because of the reasoning behind each ob-

ject. Chinese researchers assume that Western science museums possess large collections of 

material and that the star of the show often involves a superlative: the first, the last, the oldest, 

the newest, the only.30 This focus of China’s museums on firsts vividly underlines how much 

modern museum culture is still affected by China’s late nineteenth-century colonial experience 

and the notion of a weak empire and republican system being depressed by the scientific and 

technological prowess of the West. Collections of objects curated by contemporary museum staff 

and commissioned exhibitions of modern objects provide museums and science, as a community 

and concept, with an opportunity to narrate an open-ended story. At a glance, this approach is 

different to the object-based narration and collection practices favored in British and European 

museums. 

Summary
Political agendas and an emphasis on education have marked the development of post-1949 

collecting practice in the Chinese-speaking world, which until recently occurred mainly in the 

public museum sphere. In Taiwan, institutional structures have increasingly stabilized since 

the 1980s, and discourse, in line with international developments, has also increasingly con-

centrated on display technologies and audience participation.31 Conversely, science museum 

culture in China has been influenced by heavy state investment in a new generation of science 

museums since the early 2000s, and a prospering economy has only started to change ideas of 

audience participation and spur discourse on the public role of science. At the moment, histori-

cal objects in China, even those of a scientific persuasion, are found in regional or archaeological 

museums, where the focus is on their historical significance rather than their representation of 

scientific China. 

	 Science museums such as CSTM have a few collages of well-known scientists with their 

profiles on a label next to their picture. The overwhelming majority are Western. This presen-

tation gives the impression that China still looks to the West for scientific guidance. However, 

there are signs of increasing confidence here, such as the plaque with China’s first man in space. 
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When viewing the “collections” of scientists and their ideas, albeit with vested interest, we were 

left with the impression that science is best studied in the West but is becoming of increasing 

importance in China once again, even at this theoretical level. 

	 Presently, the collecting of historical science in Taiwan and China is distinguishably 

the work of natural science and historical museums, whereas when it comes to modern and 

present-day sciences, the scientific topic is in focus. Exhibitions are frequently updated, and 

the archiving of outdated exhibits is only slowly becoming the responsibility of museum staff. 

Stakeholders in both Taiwan and China have only just started to develop an interest in the most 

recent past from 1950 to the present. Museums in China that feature science as their main topic 

first determine an exhibition topic and then focus on commissioning their collections. However, 

as the study of science communication, including collecting for museums, in the modern-day 

Chinese-speaking world is constantly changing, this study will remain open-ended for the time 

being. At the time of writing, CSTM in China is preparing an upcoming exhibition that will look 

to past materials, such as archived publications, transmissions, and images, to create a gallery 

they think will speak to a contemporary visitor, effectively turning a new leaf in “traditional” 

museum collection practices and recapturing the fascination of a new audience. This exhibition 

will use the images of science past to underline the modernity of collections of science present 

(Figure 4).

4. 
Traditional Chinese puzzle at the Zhejiang Science and Technology Museum. Photo by the authors.
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Notes
  1.	 Literature on science popularization strategies and the role of museums is vast. For an overview see Xihu Lou 楼锡祜, “Zhong-

guo ziran kexue bowu guan de fazhan” 中國自然科學博物馆的發展 [The development of the natural science museums of China], 
Kepu yanjiu 15 (2008): 48–52; Lian Duan 段煉, “Ziran kexue bowu guan yu koushu lishi” 自然科學博物館與口述歷史 [Science 
museums and oral history], Zhongguo keji shi zazhi 32 (2011): 78–82.

  2.	 The museum in Guangzhou explicitly refers to itself as a science center (kexue zhongxin 科學中心), but it is in the minority. 
Smaller units are occasionally called a “science and technology exhibition hall” (kejiyuan 科技院). Shengguo Wu (Peking Univer-
sity), in discussion with the author, 26 May 2014. 

  3.	 The Regulation for the Popularization of Science and Technology of the People’s Republic of China (Zhonghua renmin gonghe 
guo kexue jishu puji fa 中華人民共和國科學技術普及法) was signed by Jiang Zemin as head of the National Congress on 29 June 
2002. The communiqué consists of six chapters that outline strategies and aims and give recommendations for organizational 
structures and content of popularization efforts. Museums are addressed in section 16 together with science and technology 
exhibition halls (keji guan 科技館), libraries (tushuguan 圖書館), and cultural centers (wenhua guan 文化館). Their “purpose is to 
disseminate and popularize science education” (yinggai fahui kepu jiaoyu de zuoyong 應該发挥科普教育的作用). The regulation 
is a strong recommendation (yinggai 應該) rather than obligatory (bixu 必須). For the full text see Ministry of Science and Tech-
nology of the People’s Republic of China, http://​www​.most​.gov​.cn​/​fggw​/​fl​/​200601​/​t20060106​_53394​.htm (accessed 25 June 
2014).

  4.	 See, e.g., Wu Xiaoming 吳曉明, “Lun goujian ren yu ziran hexie shehui shiqi de ziran lei bowu guan zhanshi – jian tan Zhejiang 
ziran bowu guan xinguan zhanshi shijian” 論構建人與自然和諧社會時期的自然類博物館展示—兼談浙江自然博物館新館展示實踐 
[Natural history museum exhibitions during the period of harmonious society of human and nature—Exhibition practice of new 
Zhejiang Museum of Natural History], Kepu yanjiu 4 (2010).

  5.	 Representative of the Chinese provincial-level science museums, in discussion with the authors, October 2013.
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CHAPTER 7

A National Program for Safeguarding 
Scientific and Technical Heritage

Since World War II, science and� technology have 

experienced tremendous development. However, 

the obvious gap between the concerns of civil soci-

ety and the world of science and research appears 

to be troublesome.1 Contemporary science has 

changed the scale of exploration, from the infinitely 

small to the infinitely large. In the field of observa-

tion, we went from the micrometer, in the 1960s, 

to the nanometer. In the same period, France was 

engaged in research programs involving heavy and 

often very large equipment, an area that scientists 

and historians of science have denominated “big 

science.”2 The areas covered by this development 

are, for example, space research and nuclear research. These programs have often been funded 

at the European or international level. A recent example is the construction of the Large Had-

ron Collider at the European Organization for Nuclear Research (CERN).3 These developments 

have advanced the sciences and influenced scientific practices.

	 The recent development of science and technology has also resulted in the formation of 

important scientific communities. With the ongoing retirement in the years from 2000 to 20204 

of a large number of researchers and engineers who created research laboratories and teaching 

institutions in the 1960s,5 some of the knowledge and material evidence will disappear, erasing 

irreplaceably the memory of this half century of scientific and technical development.

	 In this contribution, we would like to share the experience of the creation and expansion of 

a national mission for safeguarding and promoting the scientific and technical heritage, material 

Catherine Cuenca
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and immaterial, of the past 60 years initiated and run by the museum of the Conservatoire Na-

tional des Arts et Métiers. This mission, entrusted to the museum in 2003 by the French Ministry 

of Higher Education and Research, celebrated its tenth anniversary in 2013–2014. It started in 

1996 in Nantes and was extended in 1999 to the scale of a region, Pays de la Loire, located in 

western France. During the past 18 years new practices, methods, and tools have been built to 

adapt and innovate with the progress of the program.

The Preservation of Material 
and Immaterial Culture
Technology and science significantly evolved in the past 60 years regarding the manufacturing 

of scientific and technological instruments in small and large series. Sometimes bought in large 

numbers in a period of robust scientific growth, they accumulated in laboratories and have now 

become obsolete, been cannibalized, or been scrapped to make room in the laboratories for new 

usage. Their appearance, often in black boxes, did not attract the attention of researchers and 

enthusiasts who might prefer “beautiful objects” in wood, brass, or copper. In 1996, historians of 

science and technology began to show substantial interest in the topic.6 As for heritage profession-

als, working on a period so close in time—less than 30 years past—was not a priority. To this fact 

are added the lack of experience needed to make a reasoned selection a priori, the deficiency of 

information resources, and the mass of objects, which probably created some negligence or igno-

rance with regard to their preservation. In this climate, without intervention few material traces 

would have remained of these scientific studies and technical innovations of the period, with the 

exception of perhaps a few isolated objects or collections formed through the initiative of scientists 

and instrument collectors. The same would have happened regarding the knowledge of the design 

and use of the instruments, their usage in research, and the history of the creation of laboratories.

	 Therefore, it seemed essential to safeguard the memory of these scientific instruments and 

material traces of research to put them in the context of innovation and to keep testimonies by 

professionals in higher education, research, and business. This history can then be transmitted 

to current and future generations. Safeguarding this heritage-to-be helps retain some memory of 

this half century of technical and scientific evolution.7 But which history of the twentieth century 

does our society leave to the twenty-first century?

Safeguarding Programs of Scientific 
and Technical Heritage in France
In the 1980s, in France, during the Year of Heritage, the notion of heritage extended to all areas 

of culture.8 However, it did not affect much public-sector research and development in industry. 

Ten years later, several programs were started to educate scientists and heritage experts. This 

was the case of the Remus program, funded by the Ministry of Higher Education and Research 
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and the Ministry of Culture.9 This program encouraged exchanges between teams of museums, 

university researchers, and museum professionals to reflect on the museum of science and tech-

nology.10 Another example is the national program for safeguarding the heritage of astronomical 

observatories jointly funded by the Ministry of Higher Education and Research and the Ministry 

of Culture in 1995.11 But in the years 1995–1996, despite these efforts, no national, comprehen-

sive, and systematic policy safeguarding tools and know-how of scientific research existed.

	 By 1996, a mission to safeguard heritage, created at the University of Nantes, allowed us to 

develop the first methods for safeguarding scientific laboratory equipment on the scale of a region, 

capable of becoming partly a “heritage of contemporary research.”12 Three years later in 1999, 

this operation was extended to the regional level after a second survey indicating that research 

and higher education institutions in the region of Pays de la Loire had a collection of instruments 

(over 30,000 were identified, with more than a tenth to be preserved and inventoried) that might 

be of scientific interest, depending on the selection criteria that were applied.13 However, the doc-

umented inventory and photographs of parts of these objects provided little visible action for poli-

ticians and the public. With the support of regional authorities, the Ministry of Higher Education 

and Research, and the European Regional Development Fund, the regional mission team devel-

oped multimedia tools that followed the technological developments over this period, in particular 

from 1999 to 2004. The concept of “life stories” was used to narrate 30 years of research experience 

in several scientific fields. Scientists and their teams were interviewed and filmed, and a collection 

1. 
DVD with testimonials of scientists and their teams. Mission PATSTEC-Pays de la Loire-Université de Nantes.
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of the testimonials was edited on DVD (Figure 1). The Mission de Sauvegarde du Patrimoine Scien-

tifique et Technique Contemporain (PATSTEC) website (http://​www​.patstec​.fr) was built to make 

the resources available for cultural professionals, teachers, historians, and the general public. The 

project contributed to the networking of more than 200 people: scientists and cultural and indus-

trial professionals. It is this dual sense, the dissemination and preservation of heritage, that defines 

the objectives and operations of the national mission of the Musée des Arts et Métiers.

The Launch of the National Mission
In 2001, at a conference of the faculty of Centre National de la Recherche Scientifique (CNRS) in 

Orsay, near Paris, on the theme “Great Scientific Instruments,” a meeting  between the director 

of the Musée des Arts et Métiers and the mission team of Pays de la Loire reinforced the need 

to safeguard this “new heritage.”14 Continuing the policy in the field of scientific and technical 

culture of the Ministry of Higher Education and Research, in 2003 the museum director was 

entrusted with a national mission for the safeguarding of contemporary scientific and technical 

heritage: to make an inventory and to value the material and immaterial memory of the science 

and technology of the twentieth century. To be able to respond to this request quickly and to 

implement this national program, the director wanted to use the skills, methods, and tools devel-

oped in Pays de la Loire, acquired through many years of experience, and to anchor them more 

firmly in the development of the national program.

	 The objectives of the museum were and still are to create collaborations, to promote the es-

tablishment of reasoned collections covering this period, to contribute to debates on the scientific 

and technical culture, and to define the terms of cultural transmission of science and technology. 

The aim is to place the objects, practices, methods, results, and failures in cultural context and 

thus in the development of science and technology in society.15

	 The difficulties that have arisen in the national mission are located at the intersection of 

many disciplines: How do we make a choice among the mass of instruments identified in labo-

ratories? Is the danger of decline sufficient to constitute such a heritage? The development of 

scientific and historical criteria led to questioning the evolution of instruments and scientific in-

novation. Thus, a striking feature of the twentieth century is the advent of computers in research, 

industry, and daily life, which radically altered habits in less than 20 years.

	 The objectives are of interest to higher education institutions, research organizations, and busi-

nesses: to safeguard contemporary scientific and technical heritage, equipment (instruments and 

related documents), and immaterial products (know-how); to create a national network of profession-

als and enhance heritage research and industry; and to play an advisory role and provide expertise, 

fostering regional initiatives and supporting the implementation of the program in different regions.

Selection Criteria
How do we make choices from the mass of instruments identified in laboratories? Is the danger 

of decline sufficient to constitute such a heritage?

http://www.patstec.fr
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	 The development of criteria for sorting objects leads to a reflection on the evolution of in-

struments and scientific innovation. In practice, the preservation—collections of instruments and 

know-how—is subject to a dual approach. It is first necessary to keep as many items as possible 

during the first selection along with documentation that can be considered representative of this 

period since the work is done in vivo. In general, however, the lack of space to store objects leads 

to the requirement to make quick and thoughtful yet reasoned and meaningful empirical selec-

tions in the second step.

	 Reflecting on heritage shows that multiple mechanisms are responsible for its formation. 

When does an object or a set of objects become “heritage”? How are “contemporary” objects per-

ceived as “cultural property”? Sorting criteria remain classical: historical interest and the scientific 

and social utility of an object by a community at a given time. Obviously, prototypes and rare and 

significant objects are immediately set aside, and then the scope of the selection must be refined. 

The difficulty with the contemporary object is to identify its scientific and historical interest. Is the 

object part of a line demonstrating a technological evolution or a single moment of creation of an 

innovation such as the development of a prototype, or is a set of instruments so widely used that 

it needs to be retained as specific to the period? What can be done with large instruments of big 

science or “systems,” for example, the coupling of a gamma-ray camera with other measuring de-

vices? Do we keep any part if we cannot keep it all? If nothing can be kept, a photographic report, 

the preservation of oral archives, and/or a scan of the whole are immediately required.

	 The abundance of scientific and technological objects within institutions requires several 

successive selections. A working group based on the network of the national mission attempts 

to answer these questions.16 It is composed of scientists from various disciplines and museum 

professionals and historians of technology. The main objective that we initially set at the national 

level is to create a “corpus of representative objects” of the past 60 years in a historical sense. It 

will serve as a reference for members of the network in different regions. At the same time, the 

project managers conduct empirical selections based on research topics chosen by a local scien-

tific committee that are considered to be significant. These choices narrate a local story based on 

these material traces and testimonials.17 These two approaches, conservation of immaterial and 

material culture, are complementary and enrich each other (Figure 2).

The Organization
To accomplish its objectives, the mission has a national coordination structure, located at the 

Musée des Arts et Métiers. The museum receives funding from the Ministry of Higher Edu-

cation and Research to contribute to the achievement of regional inventories and to establish 

common national inventory preparation multimedia tools. The mission is based on a national sci-

entific advisory board, which meets once a year and gives an opinion on the activity performed.

	 The national network developed by the mission today has 16 French partner regions and 

will cover all of France starting between 2014 and 2018. Over 50 people are directly involved in 

local missions. Their affiliation is usually a higher education and research institution, a science 
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museum, or a regional center of the Conservatoire National des Arts et Métiers (CNAM). The 

project managers are the local representatives in each partner region.

	 Local missions rely on the network of local representatives of the ministry of research and 

technology and on CNAM regional centers, universities, research organizations and French 

Grandes Ecoles (higher education schools outside the main framework of the university sys-

tem), museums, technical and industrial archives, centers of scientific culture, companies, and 

associations whose representatives are members of the local steering committees. Actions of this 

2. 
Trebuchet balance, 1900–1925. Number 2905_01, Mission PATSTEC-Pays de la Loire- Université de Nantes.
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network add the intervention of more than 200 volunteers participating in inventory valuation 

and events and leverage the efforts of the mission in the country. Regional teams are in regular 

contact with the national unit. Two technical workshops and a professional national day take place 

every year in Paris and in the provinces to exchange and share best practices. Actions and results 

are available in the National Database and on the PATSTEC website (Figure 3). The national 

database includes more than 17,000 fact sheets registered and 50,000 documented media sources 

that are also available from the website.

3. 
The PATSTEC website. Mission PATSTEC-Pays de la Loire-Université de Nantes.
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The National Catalog
The PATSTEC local centers regularly integrate their data into the national database after ver-

ification by the coordination unit, which controls the data quality and homogeneity through an 

empirical classification developed with the network. It thus constitutes a knowledge base that 

gradually facilitates the work of describing objects. Once the data are embedded in the national 

database, additional indexing is no longer useful, and only additions should be specified. Thus, a 

real division of labor is implemented, allowing us to progressively accelerate the indexing tasks 

(Figure 4).

	 This program was consistently developed over 10 years. Institutional partners that have 

joined the mission and are members of the network are CNRS, Météo France, the Fondation 

EDF, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, CERN, and industry 

partners such as Essilor and Michelin (Figures 5 and 6).

International and Future Development
The French program has attracted interest from international museums and academic institu-

tions, including in Belgium, Italy, Greece, Germany, England, Switzerland, Serbia, Hungary, 

Bulgaria, Spain, and Portugal. These countries formed a consortium in 2008 to respond to a Eu-

ropean project tender. The objectives of this consortium were to build a similar classification, to 

develop a common methodology for data entries, to create a European database, and to consider 

sharing collection tasks between the different countries. 

	 Given the scale of this program and the issues related to the selection of large objects such 

as large scientific instruments or aircrafts, which may involve the framework of European proj-

ects in several countries, it was essential to bring together museums and university scientists 

holding collections from this period. A network of Belgian universities, Wallonne, has now been 

4. 
X-ray lamp, 1900–1925. Number 3083, Mission PATSTEC-Pays de la Loire-Université de Nantes.
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implemented and collaborates with PATSTEC.18 Major scientific and technical museums, includ-

ing the Museum of Science and Technology of Milan, the Deutsches Museum in Munich, and the 

Science Museum in London, are grouped within the European network called ESTHER (Euro-

pean Scientific and Technical Heritage). This group is led by the Musée des Arts et Métiers. Fruit-

ful discussions revolve around the safeguarding and exchange of best practices and acquisition 

policies for contemporary scientific and technological heritage. On an international level beyond 

the European Union, discussions are ongoing with the Canada Science and Technology Museum 

(Ottawa) and the MIT Museum in the United States, institutions that are also aware of this theme. 

	 Looking toward the future of our work in France, it will become important to establish the 

permanence of the regional missions so that they become sustainable. Each French region brings 

its own research agenda to the project. The heritage-to-be of each region has a local identity that 

is enrooted in the region. 

5. 
Example of mission partners. Mission PATSTEC-Pays de la Loire-Université de Nantes.
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16.	 C. Cuenca, “Patrimoine scientifique et technique sauvegarde, collecte et tri,” in Le patrimoine scientifique et technique: un 
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CHAPTER 8

Collecting Twentieth-Century Chemistry
A Reevaluation of the Collecting Philosophy and 
Goals at the Chemical Heritage Foundation

Introduction
The Chemical Heritage Foundation (CHF) is rela-

tively new to the world of artifact collecting—the 

organization began collecting artifacts in only the 

late 1980s, long after most other history of sci-

ence institutions had started. From the beginning, 

the primary focus of artifact collecting was on the 

post-“second chemical revolution” or scientific 

instrumentation revolution, the period after the 

development of the first electronic analytical in-

struments.1 The purpose of collecting was initially 

to build a research collection that would be a re-

source to historians and provoke nostalgia among retired practitioners. However, the opening 

of CHF’s new museum and first permanent exhibition in October 2008 signaled a strategic shift 

for the organization from a primarily research-based institution to an increasingly public-focused 

organization and caused reflection on both the methods and reasons for collecting. 

	 The opening of the museum at CHF provided the first real opportunity for the organiza-

tion to look critically at its artifact collections and to think about how its significant collection of 

electronic-era instrumentation would be interpreted and understood not just by scholars and 

practitioners but also by curators, museum visitors, and the larger public. Not surprisingly, the 

planning process and resulting exhibition revealed the importance of collecting and documenting 

more than just the “black box.” The curatorial staff discovered during the museum development 
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process that in order for the artifacts to have relevance to a larger science-curious public we 

needed to target the collecting of artifacts and complimentary materials that helped communi-

cate human stories and the social impact of science on our world. Museum staff also began to 

see a need for engaging, relevant stories around the artifacts to engage specialists in scientific 

fields—if the subject was outside their area of specialization, then scientists also needed a hook or 

draw to give them an entry point into less familiar subjects. These institutional shifts caused us to 

spend the first several years after opening the museum reexamining our scope, our targeted col-

lecting initiatives, and what we actually collect. An internal critique led to fundamental changes 

in our philosophy about collecting instrumentation and supporting materials. This chapter will 

evaluate how the early motivations for collecting and the process of creating the museum led to 

this philosophical shift and how the still-evolving, revised collecting strategy is moving the col-

lection forward.

The Origins and Early Days  
of Collecting at CHF: “Action  
Is a Matter of Some Urgency”
The Chemical Heritage Foundation began as a center for studying the history of chemistry on 

the campus of the University of Pennsylvania in 1982. The organization had originally planned to 

act as a clearinghouse and appropriate home seeker for archives and artifacts. Early newsletters 

of what was then called the Center for the History of Chemistry (CHOC) show an organization 

resisting the urge to collect and acquire collections. The Chemical Heritage Foundation sought 

to follow the model established by the American Institute of Physics: 

The immediate aims of [CHOC] are to develop a program of interviews and undertake oral 

histories . . . to locate manuscripts and archival records of individuals, societies, chemical 

engineering and the chemical process industries; to offer aid in sorting and cataloging . . . 

to encourage the deposit of personal papers and other records in appropriate regional ar-

chives, to develop a central computerized catalog of manuscripts . . . Rather than attempting 

to build one central collection of historical records . . . CHOC will serve as a clearinghouse 

for information about materials held in repositories around the country.2

However, the need for an institution devoted to collecting the history, especially recent history, 

of chemistry quickly became apparent. The large volume and historical wealth of materials avail-

able was surprising as were the small number of institutions interested in taking on modern 

scientific collections. As early as 1983, at the third CHOC policy council meeting, there was a 

report given on the lack of active collecting by any institution or organization, and the council 

appointed a committee to pursue the issue, recognizing that “action is a matter of some urgency” 

because history was being lost.3 
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	 In the first years of the organization, collecting began because of collections identified 

during themed initiatives that CHOC was undertaking. For example, the Polymer Project in-

cluded an oral history initiative and a survey of over 100 scientists and industry people about 

the disposition of their archives; this led to two of the first major acquisitions: the papers of Paul 

Flory, recipient of the 1974 Nobel Prize in Chemistry for his achievements in polymer science, 

and Carl Marvel, an important organic chemist who is often referred to as the father of synthetic 

polymer chemistry.4 It was not until 1988, however, when Arnold O. Beckman gave a transforma-

tive financial gift to the young organization, that interest was shown in collecting instruments. To 

mark the occasion, the BCHOC (the gift also added Beckman to CHOC’s name) held a Chemical 

Instrumentation Symposium to discuss the importance of analytical instrumentation in the his-

tory of science. Beckman was a significant figure in analytical instrumentation, so it is not sur-

prising that in 1989 BCHOC issued a call for Beckman instruments to “decorate” the center. No 

longer a seeker of appropriate homes for collections, the actively collecting organization’s home 

was quickly becoming overwhelmed with archives, books, and artifacts.

	 By the early 1990s CHF was beginning to grow exponentially in both its activities and 

its collections; the organization now had an established research library and quarterly maga-

zine. Searching through CHF institutional archives, the first reference to a plan to develop a 

CHF museum to showcase the objects that CHF was acquiring occurs in 1995, when it was 

initially conceived of as an instrumentation museum, one that would be focused on the great 

analytical instruments that have so dramatically shaped science and the laboratory since 1930.5 

This desire to develop an instrumentation museum was given momentum by a group of re-

tired chemists who were early instrument developers, adopters, and employees of instrument 

companies. During the early collecting days at CHF, this group was the primary audience for 

the instrument collections. The group, which became known as the Heritage Council Instru-

ments and Artifacts Committee (HCIAC), had bigger aspirations, however; they wanted to 

share their history and the impact of instruments on society with a larger public. This desire 

spurred a boom in the collecting of twentieth-century analytical instruments. It was opportune 

timing, for few other institutions were interested in collecting modern chemical history on a 

large scale. By 1998, CHF had collected its first large instrument that could not be stored on 

site, a Consolidated Electrodynamics Corporation (CEC) Model 21-103 mass spectrometer 

(Figure 1).6

	 When one of the HCIAC members who was a PerkinElmer retiree heard that Perkin-

Elmer’s Bodensee Collection and Museum in Überlingen, Germany, was to be dismantled, 

he reached out to the company and arranged for CHF to become the permanent home for the 

collection; this significant acquisition greatly added to CHF’s small but growing collection of 

artifacts.7 The Bodensee Collection helped increase the diversity of CHF’s collection because 

it included not only PerkinElmer instruments but instruments from makers in many different 

countries, including the United States, Germany, the United Kingdom, eastern Europe, and 

Japan. 
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	 As a result of this donation and the momentum it generated to bring other offers, CHF’s 

collection grew rapidly to include hundreds of analytical instruments by the early 2000s. This in-

tensive collecting, however, was not overly systematic, which meant that the collection included 

many highlights and technological milestones but was not a cohesive or comprehensive collec-

tion of artifacts. Nor were there overarching themes or stories that were necessarily emerging out 

of the collecting of instruments. These early collecting decisions and the rapid growth of the col-

lections were beginning to have a significant impact on limited resources and space, and by 2003 

it was clear that CHF needed to become more strategic in its collecting. The Chemical Heritage 

Foundation as a whole was maturing; the organization was crafting its first strategic plan, and the 

newly formed special collections group of professional curators and archivists was working with 

the library to develop a collections policy that included detailed goals and a collecting scope for 

the institution. The special collections staff came from backgrounds not in science but in history 

and public history. The historical training of the staff certainly had an impact on how the collec-

tions scope developed, applying a lens of social and public history and not strictly scientific and 

technological advancements. In addition, as part of the professionalization of the department, 

CHF also assembled an advisory group of curators and special collections librarians from other 

1. 
Archival photo of CEC Model 21-103, from the Consolidated Electrodynamics Operation and Maintenance Manual, Mass 
Spectrometer, Analytical and Control Division, 1964. Chemical Heritage Foundation Archives, Philadelphia, PA.
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significant history of science repositories to advise and provide input on the collections policy 

and the development of the permanent exhibition. 

	 It was during this period that CHF embarked on an initiative, in collaboration with the 

Heritage Council Instruments and Artifacts Committee, to identify and collect the “fifty chemi-

cal laboratory instruments that changed the world in the twentieth century.” These instruments 

would demonstrate analytical instrumentation’s impact on science, medicine, and industry and 

how instrumentation benefits society. The HCIAC established a list of criteria for determining 

which objects would go on the list. To make it onto the list, an instrument had to meet one or 

more of the following criteria:

1.	 It had to be historically significant; for example, it was the first of its kind or it marked a 

great scientific discovery.

2.	 It was commercially or socially significant. 

3.	 It dramatically changed chemical laboratory practice.

4.	 It was innovative or disruptive, requiring scientists to rethink or learn new or expanded 

principles of analysis.

5.	 It was representative of a class or was the first of a class.

6.	 Its design was based on some significant component/technological advancement such as the 

vacuum tube or DNA on a microchip.8

The resulting list included more than 60 instruments, some of which CHF already held, along 

with a targeted list of 10 must-haves that were considered the most important or at the greatest 

risk of disappearing. The “10 Most Wanted” list helped CHF focus its collecting efforts and iden-

tified the instruments that CHF most actively sought to find (Figure 2).

	 It was a successful campaign; over the next five years approximately 75% of the total 60 

instruments list was collected by CHF. However, there were some flaws. The list was (not sur-

prisingly) shaped by the backgrounds of those on the committee; their specialties were mainly 

spectroscopy and mass spectrometry, and the list reflected this. Also, the committee favored the 

“first of its kind” and “representative of its class” criteria more often than specific objects related 

to scientific discovery or of a historical significance. The items on the list tended to be repre-

sentative, not specific, a particular model that had commercial success rather than a particular 

artifact that had been a part of a historic discovery or used in a way that lent itself to a significant 

story. For the committee, nostalgia and personal memory of many of the instruments were drivers 

for wanting to collect and preserve the artifacts on the list. Nonetheless, the collecting initiative 

allowed CHF to greatly expand its instrumentation collection both in quantity and quality; the 

additions to the collection made by the initiative were essential to the successful planning of the 

museum, and many of the instruments on the list are in the permanent exhibition. The collecting 

project also helped legitimize CHF as an artifact-collecting institution—it showed the instru-

ment and historical communities that the building of collections was something CHF was now 

serious about doing. This, in turn, led to more donation offers.
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Exhibitions Change Everything
As the planning of the museum moved into design development in early 2006, the group of cura-

tors that would develop the museum content was assembled, and the definitions of scope as well 

as audience became defined. The curatorial team for the permanent exhibit, which comprised 

primarily historians of science, curators, and collections managers, determined that the exhibit 

would be focused around real artifacts (not interactives or large graphics), have a strong narrative 

focus that was storytelling in style, emphasize the social context of the artifacts, and tell human-

themed stories as opposed to the technical how and why (Figure 3).

	 In order to tell narrative-based stories, however, the artifacts needed to have stories to tell. It 

was here that the curatorial team encountered an important lesson: simply having the artifact is not 

enough. Commonly referred to as “black boxes,” the instruments present definite challenges in exhi-

bitions. To the nonpractitioner, they all look very similar, and their covers present a barrier to under-

standing how they work and why they are important. The Museum at CHF presents the instruments 

without the technical details and instead emphasizes the historical and social context to provide the 

visitors an engaging human-focused story. However, in order to present an artifact, especially black 

boxes, in an engaging way—whether in an exhibit, online database, or as a resource for historians—

there needs to be supporting documentary materials that help with the interpretation and allow the 

instrument to “speak.” The instrument ideally has documented provenance of how it was used, who 

used it, and for what purpose. In a perfect scenario, there are laboratory notebooks, archival materi-

als, manuals, photographs, and personal accounts that help the curators interpret the object.

	 The exhibit that opened in 2008 was successful in creating narrative-based displays that 

place the instruments and artifacts into the context of a larger human story.9 Opening the museum 

was really just the beginning, however, in shifting the ideology on collecting, and the unexpected 

success with a larger public audience caused much institutional adjustment. The completion of 

CHF’s first permanent exhibition caused curatorial staff to reflect on what we had learned. It 

also raised the question of where to go from there. From developing the museum, the collections 

and curatorial staff learned that the collecting strategy needed to be more aggressive in seeking 

instruments and artifacts that tell interesting historical stories and are accompanied by support-

ing materials. But how do you develop and implement targeted collecting strategies with limited 

resources? With limited storage space, how do you select which instruments to collect, especially 

when many scientific artifacts are large and very heavy? Perhaps most challenging, how do you 

identify what will be historically significant in the more recent history of science without the long 

lens of time and historical assessment to guide you? 

	 After a period of reflection and assessment, we spent the next several years grappling with 

how to articulate a new collecting plan and revised scope that both achieves mission and future 

needs and is reasonably achievable given limited resources, particularly staff resources. It is a 

work in progress and will continue to evolve as the institution changes and grows. What follows is 

an account of the progress made in the five years following the museum’s opening and reflections 

on lessons learned and possible future directions. 
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	 We began the reevaluation process by considering some important questions with regard 

to scope: What would the ideal collecting strategy look like? How do we use the experiences 

and lessons learned from building the museum to inform the collecting strategy and documen-

tation methods? How do we ensure stakeholder buy-in? The collections staff decided to first 

look at items in the collection that we considered successful and ideal examples for both exhibit 

3. 
Image of people in the museum. First Friday at the Museum at CHF, April 2013, Chemical Heritage 
Foundation Archives, Philadelphia, PA. Photograph by Conrad Erb.
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possibilities and research potential. In the study, we sought to identify what made certain arti-

facts successful examples in the hopes of pinpointing some benchmarks or qualifying statements 

for evaluating future potential acquisitions. Several examples with their accompanying notes help 

bring clarity to the thought process:

1.	 CEC Model 21-103 Mass Spectrometer, 1940s (Figure 4). Not only do we have the instru-

ment itself, which is quite large and stored at our off-site storage facility, but we also have 

early components, images, manuals, and trade literature, and in the papers of Charles Jud-

son we have a wealth of material about the development of the 103 and its predecessors that 

provides insight into the early commercialization of mass spectrometry. We also have an 

4. 
Image of CEC components assembled as they would have appeared in instrument. CEC 21-103, components. Gift of Charles 
Judson, Chemical Heritage Foundation Collections, Philadelphia PA. Photograph by Gregory Tobias.
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oral history with Judson that gives an account of the early development days at CEC. What 

marked this as a success was the comprehensive story that could be told through a variety 

of materials and the potential research value to historians. While this particular Model 103 

lacked a pedigree, the personal recollections of Judson give the instrument and components 

an interesting story to tell. 

2.	 Beckman IR-1 Spectrophotometer, 1941 (Figure 5). This artifact is currently on display in the 

museum; the IR-1 at CHF is one of two complete Beckman IR-1’s believed to still exist. Its 

history and role in the United States’ effort to develop synthetic rubber during World War II is 

well documented, as is its use in research relating to aviation fuels and determining the struc-

ture of penicillin.10 In addition to the already established historical significance, the special 

collections staff had the opportunity in 2007 to travel to Houston, Texas, and research the ar-

chival material in the Shell Oil Company’s archive about Shell employee Dr. Robert Brattain, 

his role in the development of the instrument as part of the secret war project, and how Arnold 

Beckman, a key player in the early development of electronic analytical instruments, came to 

be involved.11 The Chemical Heritage Foundation also conducted an oral history with Arnold 

Beckman and more recently acquired the Beckman Archives. The IR-1 provided an example 

of an object with significant provenance as well as great documentation. 

5. 
Image of the Beckman IR-1, overhead shot. On loan to the Chemical Heritage Foundation from Danaher Corporation, Wash-
ington, D.C. Photograph by Gregory Tobias.
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3.	 Fenn Prototype Electrospray Ionization Mass Spectrometer, 1980s (Figure 6). The main 

component of this instrument is on display in the museum, and it is the instrument that led 

to Dr. John Fenn being awarded the Nobel Prize in Chemistry in 2002.12 The instrument, 

although large, has a significant aesthetic quality and was a prototype of a technology that 

changed the field of mass spectrometry. The Chemical Heritage Foundation Archives also 

has blueprints and John Fenn’s personal papers. But what makes this instrument particularly 

special is that it was one of the early candidates in a program CHF developed called Instru-

mental Lives. Instrumental Lives is a video oral history project that focuses specifically on 

an instrument and an individual who either, in the case of John Fenn, created it or worked 

extensively with it. Not designed to be a traditional oral history, these interviews take place 

with the instrument itself, allowing the interviewee to discuss in detail how the instrument 

worked (or did not) and recount candid stories about their experiences, trials, and tribula-

tions with the instrument and with colleagues.13

	 Once we had identified artifacts that met our goals, we looked for commonalities in what 

made them successful acquisitions. From this assessment, we were able to craft collecting criteria 

that serve as a guide when making decisions about a possible acquisition. Not all of the criteria 

are required for an acquisition, but instead, criteria are treated more like a sliding scale—the 

6. 
Image of Fenn Electrospray prototype in museum. Gift of John Fenn, Chemical Heritage Foundation Collections, Philadel-
phia, PA. Photograph by Gregory Tobias.
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more criteria or stronger case made for a certain criterion increase the “rating” of a potential 

acquisition and its value as an addition to the collection.

Collecting 2.0
After our reevaluation, the following collecting criteria help guide decisions about a possible 

acquisition:

1.	 What is the artifact’s displayability and requirements for long-term preservation? The Chem-

ical Heritage Foundation has numerous objects in off-site storage that we now know will 

never be able to fit at CHF’s home location because of size or weight. The size of an instru-

ment or artifact does not immediately rule it out for collecting (the items in the warehouse 

are significant enough to justify holding onto, and in fact, several made the list of successful 

acquisitions), but the burden of care in perpetuity is a significant consideration when accept-

ing new donations. The visual appeal of an artifact is also important; not everyone finds in-

struments or black boxes beautiful, but they do often have an aesthetic interest that makes an 

artifact more likely to be used in an exhibition. Most new acquisitions go into either on-site 

storage (which is severely limited) or off-site storage that CHF rents (by weight, a significant 

expense when thinking about heavy analytical instruments and components) because there 

is limited exhibition space. However, long-term planning for the permanent exhibition space 

and temporary exhibitions are considerations when looking at potential acquisitions.

2.	 What is the provenance and the object’s history? What stories can the object tell us? Was 

it in a laboratory of a significant scientist? Was it used for a groundbreaking discovery, or 

did it fundamentally change laboratory practice? Conversely, was it a prototype that was an 

abysmal failure? Does the object itself serve as window into an important part of history, or 

could it serve as a representative of one that was used (and is no longer available)? We found 

that this criterion is an important lens to apply when thinking about potential research value 

of an artifact as well as potential exhibition value; the richer the history of the instrument is, 

the greater interest there is both from a scholarly perspective and for a visitor. 

3.	 Is there supporting material? Does CHF already have material in the collections that would 

be enhanced by the acquiring of the instrument? Are there archives, manuals, trade lit-

erature, and photographs available along with the instrument that would help tell a more 

complete history and help create a valuable resource for researchers? We have learned that 

simply having an instrument offers very limited research value for historians; however, com-

plementing the instrument with primary source material and literature related to the instru-

ment greatly increases the ability for a scholar to delve into the history of the artifact.

4.	 How does the instrument fit with existing collections? Does it fall within the established 

scope, or is it a new technology that CHF needs to consider expanding the scope to ac-

commodate? Conversely, is it similar to or a duplicate of an instrument already in the 

collections?



128 � Chapter 8

5.	 Does it help tell a bigger story? Can the instrument be used to tell part of a larger story in 

the history of science? For example, CHF has an early crystal puller that is in poor condi-

tion and is not overly significant as a stand-alone artifact. However, used in the context of 

telling the chemical story of the semiconductor industry, silicon chips, and the production 

of ingots, it becomes a key piece of the story.14 It is also an interesting industrial artifact 

that draws visitors to it because they wonder what it is. It is paired with a silicon boule 

with silicon wafers nearby, which makes for a powerful story arc in the permanent exhibi-

tion (Figure 7).

6.	 Is a video oral history possible? As previously mentioned, this is a program that CHF 

started and hopes to continue and expand. Funding and resources limited the ability to 

keep this project active after the museum opened, but it is hoped that it can be revived. The 

availability of the donor or other key individual to conduct an interview about the instru-

ment is something that adds significant historic value to a potential acquisition.

Implementation and Revisions
As most curators will attest, the hardest part of acquisitions is not the acquiring of artifacts but 

the rejection of artifacts. There is an art to saying no, and the criteria that we have developed are 

a key tool for curators when helping potential donors understand why an offer is turned down. 

7. 
Image of crystal puller in the museum showing placement with ingot and other key history of electronics artifacts. Chemical 
Heritage Foundation Collections, Philadelphia, PA. Photograph by Gregory Tobias.
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However, this tool does not always make the job easier. When an artifact has reached a vintage 

to be considered “valuable” by a potential donor, it usually means they have held onto the object 

for a long period of time, often storing it at their own residence despite spousal protest! The 

motivations for holding on to an item are usually very personal, and it is essential to make sure 

the donor understands that their memories and attachment to an object are valid, and by using 

the criteria as a point of reference, the curators can make a stronger argument for or against the 

collection of an artifact. 

	 There have been examples since the new criteria were implemented where an artifact do-

nation offer was declined that might have been collected in the previous era of collecting. In 

most instances, the instrument was very similar to one already in the collection or lacked the 

provenance/object history that we are now looking for in acquisitions. Most potential donors un-

derstand if an offer is declined. There are exceptions, of course, and sometimes potential donors 

have “gone to the top” or to one of our advisory groups in protest. This is when transparency is 

absolutely essential. The criteria are not kept secret, nor are the reasons for accepting or declin-

ing an offer, and because of the policy of transparency the curators feel supported in their deci-

sions. There will always be those instances where a declined offer creates hurt feelings, just as 

there will always be instances where bigger institutional needs or interests demand the accepting 

of donations that don’t necessarily meet the criteria. What the criteria provide, however, is the 

empowerment and confidence that curators’ decisions about donation offers are based on sound 

institutional policy. 

	 Collections staff have also found that the criteria provide opportunity to reconsider what is 

already in the collection. If a donation offer is made for an instrument that is the same make and 

model or very similar to one already in the collection but the potential acquisition better meets 

the criteria, we now have the ability to consider deaccession of an earlier acquisition in favor of 

a duplicate that has better provenance and research potential. The collections policy at CHF 

includes a policy and procedures on deaccessioning that follow professional museum standards, 

and the addition of the new criteria led the collections staff to begin evaluating existing collec-

tions for potential deaccessions.15 Assessing existing collections for potential deaccessioning must 

be handled with great care and thought; there is always potential that the public or constituents 

will interpret deaccessioning as rash or uncaring. It can also be overwhelming for staff; these are 

decisions that should never be taken lightly. For these reasons, the collections staff decided to 

take a conservative and measured approach to deaccessioning. 

	 Knowing that the off-site storage is a drain on resources, staff began by identifying some 

key subject areas that included artifacts in off-site storage. A spreadsheet was developed that 

included all the instruments in a particular subject area (spectroscopy, gas chromatography, etc.) 

and the vital information on each object. The spreadsheet was then circulated to members of 

the HCIAC, and the committee members were encouraged to further disseminate the list to 

experts and retirees (often those that had worked with the instruments) in the field that they 

knew. The collections staff was surprised at how receptive the instrument community was to this 
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assessment, and the quality and number of responses far exceeded expectations. Comments in-

cluded definite “must keep” objects and justifications about why instruments should be saved as 

well as arguments for disposal, such as there was a better example already in the collection or the 

instrument never became relevant to the field (a favorite comment was that a particular instru-

ment “was a real dog”). By having an open discussion about deaccessioning we were able to con-

fidently identify three instruments in the first assessment that should not be part of the collection 

(unfortunately, because they had no value to any other museums, there was little choice but to let 

them go for scrap and recycling). Future assessments will undoubtedly identify additional items, 

and the process showed that a conservative and transparent approach led to positive results.

	 Like many curators and collections managers, we all too often find ourselves with more 

projects and to-do lists than staff or funds. The challenge of limited resources means that CHF 

is primarily passive in collecting methods for instruments and artifacts. In most instances, the 

offers come to CHF; donors find CHF either through word of mouth, online, or because of the 

museum. The new list of criteria provides staff with a means of evaluating donation offers, and its 

application over the last several years has proven it to be a highly useful tool. However, moving 

forward, CHF would ideally like to again target particular instruments, discoveries, and fields 

that it feels are significant enough to be permanently preserved. 

	 The collecting of more recent chemistry strikes us as particularly important: identifying the 

instruments of the last 20–30 years that need to become part of a permanent historical record. 

How do we make historic judgments on the recent past? In addition, in January 2014, CHF com-

pleted a new strategic plan. In the new plan CHF aims to expand its scope to be broader than the 

history of chemistry and include the history of material sciences as well. How will this revised 

and expanded focus impact collecting? The Chemical Heritage Foundation is still determining 

if it needs to adjust the collecting criteria for this change and what collecting initiatives would 

look like in these new territories. Using a concept like the 50 instruments list along with the new 

collecting criteria is part of the solution but not the whole. Moving forward, collections staff feel 

confident and are well positioned to make decisions on donation offers—the real challenge lies 

in how to assess the vast existing landscape of potential artifacts and identify those items that 

CHF wants to actively go out and seek in order to ensure that the institution continues to collect 

and document the history of chemistry and material sciences and provide a valuable resource to 

scholars and museum visitors.
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Notes
  1.	 Further information regarding the influence of instrumentation on modern science can be found in Davis Baird, Thing 

Knowledge: A Philosophy of Scientific Instruments (Los Angeles: University of California Press, 2004); Pierre Laszlo, “Tools, 
Instruments, and Concepts: The Influence of the Second Chemical Revolution,” in From Classical to Modern Chemistry: The 
Instrumental Revolution, ed. Peter J. T. Morris (Cambridge: The Royal Society of Chemistry in association with the Science 
Museum, London and the Chemical Heritage Foundation, 2002), 170–187. 

  2.	 “Center for History of Chemistry Created,” CHOC News 1, no. 1 (1982): 2–3.

  3.	 John T. Stock, “The Conservation of Historic American Chemical Instruments,” CHOC News 1, no. 3 (1983): 12.

  4.	 Nobelprize​.org, “The Nobel Prize in Chemistry 1974,” Nobel Media AB, 2013, http://​www​.nobelprize​.org​/​nobel​_prizes​/​chem-
istry​/​laureates​/​1974/ (accessed 17 April 2015); Norman J. Leonard, “Carl Shipp Marvel, 1894–1988: A Biographical Memoir,” 
National Academy of Sciences, 1994, http://​www​.nasonline​.org​/​publications​/​biographical​-memoirs​/​memoir​-pdfs​/​marvel​-carl​
.pdf (accessed 17 April 2015).

  5.	 “CHF Move to Independence Park Draws Near,” Chemical Heritage 12, no. 2 (1995): 3.

  6.	 The Chemical Heritage Foundation Archives contains an impressive collection of instrumentation manuals and advertising 
literature, including materials related to the early instruments developed at Consolidated Electrodynamics Corporation (CEC). 
Extensive archival materials that document the early development of the company can also be found in the Papers of Charles 
M. Judson, Incorporating the Papers of Harold F. Wiley and the Records of Consolidated Electrodynamics Corporation (1918–
2000, bulk 1940–1980), Chemical Heritage Foundation, Philadelphia, PA.

  7.	 David Brock, email message to author, 16 June 2014.

  8.	 Rob Lukens, “Instrumental Heritage,” Chemistry World 2, no. 6 (June 2005): 50–53.

  9.	 Success in museum exhibitions is often difficult to quantify, but in CHF’s case, success was defined by several indicators: (1) our 
core constituents, particularly the HCIAC, were highly pleased with the content, (2) we received numerous positive reviews in 
the press, including the Wall Street Journal (Julia M. Klein, “Chemistry as Catalyst,” 5 November 2008), (3) visitor numbers far 
outpaced expectations, with over 1,800 visiting in the first three months the museum was open, and (4) several formal evalua-
tions showed high visitor satisfaction, and visitor comments in the guest book are consistently positive.

10.	 More about the synthetic rubber program during World War II can be found in Peter J. T. Morris, The American Synthetic Rub-
ber Research Program (Philadelphia: University of Pennsylvania Press, 1989).

11.	 More information on the IR-1 and the synthetic rubber program can be found in the Beckman Collection, Chemical Heritage 
Foundation, Philadelphia, and the Shell Corporate Archive, Shell Energy North America, Houston, TX.

12.	 The Nobel Prize in Chemistry 2002 was awarded “for the development of methods for identification and structure analyses of 
biological macromolecules,” with one half jointly to John B. Fenn and Koichi Tanaka “for their development of soft desorption 
ionisation methods for mass spectrometric analyses of biological macromolecules” and the other half to Kurt Wüthrich “for his 
development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological mac-
romolecules in solution.” Nobelprize​.org, “The Nobel Prize in Chemistry 2002,” Nobel Media AB, 2013, http://​www​.nobelprize​
.org​/​nobel​_prizes​/​chemistry​/​laureates​/​2002/ (accessed 17 April 2015).

13.	 The Chemical Heritage Foundation recognizes Instrumental Lives as primary material, much like an oral history, and long-term 
preservation is a concern. Currently, the recordings are transferred to DVD and stored in climate-controlled storage with CHF’s 
other archival audiovisual materials. The Chemical Heritage Foundation is currently in the process of developing a program for 
digital collections and digital asset management, and these materials will be included in those long-term preservation plans.

14.	 For further information on the history of electronics, see Christophe Lecuyer, Making Silicon Valley: Innovation and the Growth 
of High Tech, 1930–1970 (Cambridge, MA: MIT Press, 2006); David Brock, ed., Understanding Moore’s Law: Four Decades of 
Innovation (Philadelphia: Chemical Heritage Foundation, 2006); Computer History Museum, “Revolution Timeline,” http://​www​
.computerhistory​.org​/​revolution​/​timeline (accessed 17 April 2015).

15.	 For information on professional museum standards for deaccessioning, see Rebecca A. Buck and Jean Allman Gilmore, eds., 
MRM5: Museum Registration Methods, 5th ed. (Washington, D.C.: AAM Press, 2010).
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CHAPTER 9

A Snapshot of Canadian Kitchens
Collecting Contemporary Technologies as 
Historical Evidence for Future Research

Introduction
This article explores the Memories Are Made in the 

Kitchen project, conducted by the Canada Science 

and Technology Museums Corporation (CSTMC) 

between 2012 and 2014. The project had two 

main goals: to bring the food-processing artifact 

collection up to date and to preserve a snapshot 

of Canadian kitchens at the beginning of the sec-

ond decade of the twenty-first century for future 

historians. 

	 The project allowed the CSTMC’s curatorial 

staff to invert their well-established acquisition 

process. Rather than collect historical artifacts and documentation as pieces of evidence for 

contemporary historians, the museum collected contemporary technologies and supplemen-

tary information for future historians, who may want to study the subject several decades from 

now. Despite being firmly based in the collection development strategy and the material cul-

ture, material-semiotic, and materiality methodologies, collecting contemporary technologies 

posed some particular challenges and required novel approaches. Curatorial expertise was 

complemented by a crowdsourcing and social media campaign to identify and document ar-

tifacts that best reflect domestic technologies used by Canadians today. In addition to more 

traditional printed and audiovisual resources, social media were also used to collect intangible 

information crucial to future research, such as consumer behavior and evidence of societal 
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Curator

Natural Resources and Industrial 
Design 
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perception of kitchen appliances. Nonmaterial data, such as sounds and software, were also 

preserved for future researchers. 

	 This chapter describes the material and methodological context in which the project was 

conducted and then looks at the process used to identify and gather artifacts and supplemen-

tary pieces of evidence to allow future historians to decode the cultural practices embedded in 

contemporary objects. Finally, it concludes by summarizing the benefits and drawbacks of the 

approach taken by the CSTMC.

Canada’s Domestic Technology Collection
The Canada Science and Technology Museums Corporation, one of Canada’s six national muse-

ums, includes the Canada Science and Technology Museum, the Canada Agriculture and Food 

Museum, and the Canada Aviation and Space Museum. The national collection held by CSTMC 

reflects seven major areas of Canadian technologies: agriculture and food, aviation and space, com-

munication, domestic technologies, energy and natural resources, physical sciences and medicine, 

and transportation. Domestic technologies constitute one of the largest collections and include 

artifacts related to four aspects of the household: the equipment used in the home; the building or 

the infrastructure for housework; the people, that is, household members; and activities conducted 

within the house such as cleaning and food preparation. The collection contains over 3,000 artifacts, 

2,000 pieces of trade literature, and extensive documentation consisting of textual, photographic, 

and audiovisual material. The scope of the collection is grounded in CSTMC’s overarching theme, 

the “Transformation of Canada,” which guides all acquisition activities. In this context, the domestic 

technology collection has been developed over the years to reflect the process of household elec-

trification and urbanization in Canadian society. The artifacts in this collection reveal progressive 

mechanization, electrification, and, finally, automation of housework; carry evidence of gender roles 

and class issues; and document distribution of time spent on household chores, mainly child rear-

ing, cleanliness, and food-related activities (Figure 1 shows some artifacts in storage). The collection 

contains artifacts dating from the 1850s to the 1980s and includes very few objects produced since 

the last decade of the twentieth century. As such, it successfully documents the Canadian home 

during the nineteenth and twentieth centuries but does not reflect new technologies pertinent to 

households in the twenty-first century, which leaves a significant gap in the collection. 

Challenges of Contemporary Collecting
To fill the gaps in the existing collection, in 2010 the acquisition of new technologies became one 

of the top priorities of the CSTMC, giving its curators a mandate and resources to acquire, pre-

serve, and document technologies that reflect Canadian culture at the beginning of the twenty-

first century. From 2012 to 2014, the CSTMC embarked on a project to bring the collection of 

food preparation technologies, a category within the Domestic Technology Collection, up to date. 

Aptly titled Memories Are Made in the Kitchen to reinforce the storytelling strength of museum 

collections, this pilot project was an exercise in contemporary collecting. 
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	 Contemporary collecting poses some interesting challenges. First, museum curators, many 

of whom are trained historians, may not be best equipped to assess the future significances of new 

technologies, and curatorial procedures may not provide adequate tools for such evaluations. 

The collecting activities at the CSTMC are guided by a strict collection development strategy, 

which outlines an intellectual framework and the direction of collection and curatorial research. 

The strategy identifies “Transformation of Canada” as a broad theme guiding all acquisitions. The 

national science and technology collection is based on a premise that “scientific and technological 

endeavour has transformed Canada and its peoples.”1

	 Focused on past events, the strategy does not include any criteria that facilitate the assess-

ment of the long-term impact of current technologies on Canadian society. As historians are well 

aware, the success of a technology depends on complex social, economic, and political factors, 

which can be fully assessed only after some time has passed. The CSTMC curators use histori-

cal assessments—histories of science and technology in Canada produced by the CSTMC—to 

identify and analyze the important issues influencing the evolution of technologies. Although 

crucial for historical artifacts, these assessments offer limited information on current technol-

ogies. Furthermore, with no history of systematic contemporary collecting within the CSTMC, 

1.
Collection of small kitchen appliances in one of CSTMC’s three artifact warehouses.
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there is little precedent that can guide preparation of acquisition proposals in this area. Addi-

tionally, there are no formal visitor studies that confirm visitors’ interest in new technologies that 

could be used by curators as justification for acquiring artifacts under the category of “exhibition 

enhancement.” 

	 Contemporary collecting also poses practical challenges (Figure 2 shows a recent example at 

CSTMC). Curators have to take into consideration costs, as new technologies are often expensive 

to purchase. Recent technologies have commercial value, and companies and inventors may not 

be as inclined to share proprietary knowledge with museums. Finally, “black box” technologies 

may be perceived as exoteric and alienate a large portion of CSTMC’s target audience, families 

with small children.2 

	 In the context of these constraints, CSTMC’s curators chose to focus the pilot contempo-

rary collecting project on small domestic technologies, specifically on food preparation artifacts.3 

Arguably, collecting recent food preparation technologies presented less of a challenge than other 

curatorial subject areas such as mining, energy, and heavy industries. Food preparation technol-

ogies are relatively small, affordable, and easily accessible on the market and familiar to the mu-

seums’ target audience. Moreover, Canada has one of the largest kitchen appliances penetration 

rates in the world.4 

2. 
The Tokamak de Varennes nuclear fusion reactor is the largest artifact in the CSTMC’s collection. It was difficult to collect, 
transport, preserve, and interpret, but it is the only fusion reactor on display in North America.
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A Snapshot of Twenty-First 
Century Canadian Life
The Canadian kitchen of the 2010s is at an interesting consumption junction, an intersection of so-

ciotechnical relations that influence consumers’ technological choices.5 Customers have a choice 

of a vast array of kitchen technologies—gas, electric, microwave, induction, and combination 

equipment—available all across urban and rural Canada. Appliance manufacturers offer a wide 

variety of features and a spectrum of colors and designs for any lifestyle and decor preference. 

There is also a noticeable shift in the social attitudes to and perception of food preparation. In the 

2000s, Canadians spent more time at home than in the 1980s and the 1990s. They dined out less 

frequently and were willing to invest in high-end appliances for their kitchens. This trend is well 

summarized in a 2013 Euromonitor report that states, “It is not lost on consumers that a dinner 

for two in a nice restaurant could easily pay for a high-end mixer or food processor which would 

potentially last for several years and make countless healthy and delicious meals.”6 Many Cana-

dian kitchens are equipped with relatively new appliances; for example, approximately 40% of 

surveyed households in 2007 owned a range and a refrigerator that were less than five years old, 

and more than 50% of households purchased a new microwave between 2002 and 2007.7 Histor-

ically perceived as the site of women’s housework and all activities that constituted caring for the 

family, the contemporary Canadian kitchen is now often considered the hub of entertainment. 

3. 
Aristocrat Kitchen. Photo courtesy of Mehrzad Mehr, Peach Interior Design, Inc., Vancouver, BC.
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Tiled floors, marble counters, glossy cooktops, and mood lighting have transformed Canadian 

kitchens into a performance stage. Cooking is no longer a mundane task of feeding the family. The 

act of food preparation is now a display of artistry and skills, and the cook, be it a woman, a man, 

or the couple working together, is redefined as an artist. Semantics of the kitchen appliance has 

shifted from that of a labor and time-saving device to a high-end and well-designed prop (as illus-

trated by the example in Figure 3).8 Even though it is not possible to predict if this change, most 

apparent among the middle class—Canada’s largest population category—is a lasting trend or if 

it will contribute to a major transformation of Canadian society, the current shift in the attitudes 

associated with food preparation presents an interesting sociotechnological stage in the devel-

opment of domestic technologies. It is then worthwhile for the curator to acquire recent kitchen 

appliances for the national collection and to document the current middle-class perceptions on 

2010s kitchens for future researchers. 

	 To achieve its goal of taking a snapshot of Canadian kitchens between 2012 and 2014, the 

project comprised two overlapping yet distinctive tasks: crowdsourcing and purchase of artifacts 

and the acquisition of documentation that would provide future researchers with valuable con-

textual information. 

Building the Collection: 
Kitchen Crowdsourcing
The crowdsourcing portion of this initiative was conducted over a six-month period by the Cu-

ratorial Division, with the support of CSTMC’s Membership Services and Public Affairs. This 

process started with an appeal to CSTMC’s membership, easily accessible and representative 

of Canadian middle class, to cocurate an acquisition of small kitchen appliances that reflected 

current wants and trends. The members were asked two questions: (1) What is your favorite 

small electric kitchen appliance? (2) What will this appliance tell your great-grandchildren about 

Canadian lifestyle at the beginning of the twenty-first century?

	 The CSTMC’s 7,000 members were asked to reply via email to the curator. As with any 

direct mail campaign, there was an expectation of a 1% to 2% response rate, which would have 

provided the curator with between 70 and 140 suggestions, enough to start an artifact selection 

process. Surprisingly, the response was minimal. Out of 7,000 members, only five people sub-

mitted answers to the two questions. With such a limited response, the curator extended the 

crowdsourcing exercise to other museums’ clients and to the general public. The donors, a group 

that already recognized the value of museum acquisitions, proved to be a great resource. A media 

campaign, conducted via social media, national radio, and newspaper interviews and organized 

by the curator with the support of the CSTMC’s Public Affairs Division, offered the most success 

in soliciting suggestions. These approaches gathered over 170 suggestions from across Canada. 

	 To extend the data set beyond direct suggestions from the public, the curator complemented 

these with information gathered from wedding registries and popular press, as well as with a 
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selection of the 10 best kitchen appliances published in the Style at Home magazine and appli-

ances included in an online resource, Canadian Tire’s House of Innovations.9

	 Crowdsourcing was conducted across Canada in both official languages. The vast majority 

of contributions came from English-speaking Canadians, and over 80% were sent by women. 

Many responses focused directly on the first question and suggested different appliances but did 

not describe in any great detail the significance that future generations could attribute to 2010s 

kitchen equipment. Still, the submissions offered some cultural connotations that provided clues 

to the respondents’ lifestyles. Many alluded to overconsumption in purchasing kitchen appli-

ances. As one participant noted, “Appliances I cannot live without in my kitchen include: my 

Keurig, and my oversized toaster oven that has a rotisserie (reason for using toaster oven is the 

oven in stove houses all the cookie trays and casserole dishes that never get used).” Others, such 

as the author of the following comment, described fashion trends and social expectations: “The 

hottest thing in kitchen appliances seems to be single serving coffee machines. All my friends 

have a Keurig machine on their counters.” 

Building the Collection:  
Selecting Representative Artifacts
The most frequently suggested appliance was a high-quality coffee maker, particularly Keurig 

brand (as shown in Figure 4). KitchenAid mixers, Cuisinart blenders, and Braun choppers 

closely followed the coffeemaker as the most desirable appliances. The suggestions also included 

toaster ovens, electric kettles, handheld mixers, microwaves, waffle makers, rice cookers, and 

the Touch2O hand-free Delta faucet. Wine-making equipment, electric wine openers, and wine 

coolers made the list. A particularly interesting appliance was a T-fal ActiFry (Figure 5). Promoted 

as a healthy alternative to a deep fryer, this visually interesting multipurpose cooker was among 

the most common items on wedding registries. It was also the item that was most often left not 

purchased after the wedding date. 

	 A few general trends emerged from the submitted responses: the participants focused on 

healthy cooking and fresh ingredients and often prepared food daily. They owned more than one 

appliance that performed the same action, for example, a regular coffee maker and a cappuccino 

machine or an upright blender and a handheld mixer. The appliances were used as often to pre-

pare every day meals as to make desserts, ice cream, and smoothies; mix drinks; and serve wine. 

The home cooks wanted technologies that minimized actual handling of food, offered single-

touch control, performed many actions, and were easy to operate. They desired appliances that 

were efficient and effective. The respondents invested in their kitchens. They owned, and recom-

mended that the museum collect, high-end, well-designed, and expensive appliances. Although 

the responses came from across English Canada, it is still difficult to judge how representative 

the suggested appliances are of a “typical” Canadian kitchen since it was impossible to gather re-

liable demographic information during the crowdsourcing campaign. Rather, we have to consider 
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4.
This Keurig coffee maker was among the first purchases made by a couple in their early twenties for their new 
apartment.

5. 
In 2012 the T-fal ActiFry was one of the most often listed items on Canadian wedding registries.
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the submissions as representative of the type of appliances Canadians believe should represent 

the typical Canadian kitchen of the twenty-first century in a national collection. 

	 It is important to note a contradiction between the upscale, costly appliances suggested 

for the national collection and data acquired by the Natural Resources Canada Office of Energy 

Efficiency. According to the Natural Resources survey, Canadians pay more attention to prices of 

appliances than to features and overall quality.10 Although the museum did not track income level 

of respondents, it is possible that submitted suggestions came from Canadians particularly inter-

ested in food preparation who could afford to spend more on kitchen appliances. It is also pos-

sible that expensive, high-end appliances were suggested for the national collection because of 

the value placed on the collection itself. Respondents commented on aesthetic appeal of kitchen 

technologies and preferred appliances finished in black, silver, or chrome. Surprisingly, no one 

alluded to stainless steel, which had been a very popular trend in the late 1990s. Most suggestions 

referred to new appliances, produced after 2000. The submissions received from the general 

public and data from other sources consulted in the project confirm a 2013 Canadian market 

trend analysis, conducted by Euromonitor: 

The product categories exhibiting the most impressive growth among small cooking appli-

ances are those which have been able to benefit from the combined trends towards healthy 

eating, convenience and speed, and dining-in. . . . Conversely, product categories such as 

slow cookers experienced another year of declining sales as such products do not offer the 

speed and convenience consumers seek when cooking at home.11

	 The curator compiled the final list of eight appliances, which were acquired for the national 

collection. Ultimately, this selection was based on trends observed in the crowdsourced sug-

gestions and in sources used during the project and was rooted in the existing food preparation 

collection. The 2012 appliances were selected to complement those already in the collection in 

terms of function, features, and design and also to provide continuity within the larger collection. 

For example, whenever the crowdsourcing did not refer to a specific maker, the curator made a 

decision to purchase an appliance produced by a manufacturer already well represented in the 

collection. This approach allows for technological changes to be documented and understood as 

a process and for material culture comparison. 

	 The cutoff value for the acquisition had been set at the beginning of the initiative at C$1,000 

to provide monetary framework for the project and to document the number of the suggested 

appliances that in fact could be purchased in the early 2010s in Canada for this amount. In the 

end, this price point limited the curatorial selection to eight appliances, all produced in 2012 (see 

Figure 6), which added up to the actual cost of C$1,075.92:

1.	 Keurig coffee maker 

2.	 Cuisinart SmartPower blender 

3.	 KitchenAid Imperial Black Artisan stand mixer 
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4.	 Black & Decker Kitchen Tools 6-slice convection toaster oven 

5.	 Think Kitchen automatic electric kettle 

6.	 Oster electric wine opener 

7.	 T-fal ActiFry 

8.	 Black & Decker 6-speed hand mixer with storage case

	 The appliances were acquired in stores across Canada. The curatorial staff took photographs 

of the stores and retail displays to record the manner in which appliances were presented to the 

customer. Several appliances were purchased online through websites commonly used by Cana-

dians to buy kitchen technologies, such as Amazon and the Canadian Tire website. All original 

packaging and trade literature, such as manuals and catalogs that came with the appliances, were 

accessioned into the collection. The price of each appliance was recorded, and the purchase or-

ders, invoices, and store receipts were kept in order to document the source of the appliance, the 

name and address of the store, the date and time of purchase, and the amount of taxes paid on 

the domestic kitchen equipment. Such documentation, it is hoped, will allow future researchers 

to gain a better understanding of the consumer’s experience in relation to the displays and sales 

processes.

6. 
Eight appliances acquired for the national collection through a crowdsourcing campaign represent trends popular in 
Canadian kitchens at the beginning of the twenty-first century.
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Providing Context:  
Beyond the Material Artifact
The crowdsourcing and the purchase of appliances was the first phase in the Memories Are Made 

in the Kitchen project. Although crowdsourcing the acquisition was time-consuming, it was argu-

ably the least complicated element in this contemporary collecting exercise. Ontic in their na-

ture, objects are straightforward to purchase and store. Acquiring and preserving nonmaterial 

information embedded in artifacts poses more of a challenge. To provide future historians with 

meaningful documentation, the second phase of the initiative focused on preserving nonmate-

rial components inherent to technologies and on recording the consumption context of these 

appliances. 

	 Data crucial to future understanding of the technology, such as the sound of an appliance or 

the software used to program its operation, can be difficult to acquire and preserve. Many tech-

nologies conserved in science and technology museums, especially electrical artifacts, cannot 

be safely operated within a few decades from the date of their production as wiring standards 

change; also, plugging in such appliances may place the artifacts themselves in jeopardy. There-

fore, nonmaterial data have to be preserved independently of the artifact to be accessible to 

future researchers. 

	 As the crowdsourced appliances were acquired and accessioned to the collection, the CST-

MC’s Curatorial and Conservation departments used their judgment to determine which intan-

gible features characteristic of each technology might be valuable for future researchers. The 

museum staff decided to videotape the artifacts’ operations, focusing particularly on their sound; 

the speed at which they operated; the look of hot components; and some artifact-specific charac-

teristics, such as the amount of steam coming out of the electric kettle (Figure 7).

	 Several of the collected appliances were programmable, and it was essential to preserve 

the software used to run these appliances. Software conservation is still a new domain that pres-

ents many unresolved issues. The software data are stored on a ROM chip incorporated into 

a control board and cannot be extracted without removing the board from the artifact, which 

in turn would scarify the integrity of the object. In theory, one way to ensure that the data are 

preserved is to acquire a spare control board together with its schematics. The data can then be 

converted and preserved as a binary file. Another way is to acquire an emulator from the appli-

ance manufacturer. Emulators allow for duplication of the functions of the original software that 

runs an appliance on any computer system. However, in practice, software preservation is one 

of the most complicated aspects of contemporary collecting because of the proprietary nature 

of many programs. The manufacturers of kitchen appliances are not inclined to share commer-

cially valuable software with museums. At the time of writing, the curator was still negotiating 

issues around the software acquisition with manufacturers. One way to address the producers’ 

concerns around commercial value of the software may be to seal the data for the duration of 

patents. 
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7. 
Museum staff recorded operations of all purchased appliances and provided commentary on the look and feel as well 
as use and cleaning of the objects.
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Providing Context: Capturing 
Cultural Context
Canadian kitchens are complex social constructs, and appliances together with the nonmaterial 

data inherent to these objects should be preserved in their cultural context to allow future re-

searchers to make sense not only of the technologies but also of their integration in people’s daily 

lives. Many human and nonhuman actors are involved in various stages of design, manufactur-

ing, promotion, and, finally, consumption of kitchen appliances. The Memories Are Made in the 

Kitchen project needed to curtail the enormous amount of technical, socioeconomic, and political 

information surrounding the contemporary kitchen. Since the acquisition of artifacts was struc-

tured in the context of consumer crowdsourcing, the curator made a decision to narrow the focus 

of supplementary documentation to the consumer/owner of the appliances. 

	 Consumers go through a complicated decision-making process before they purchase an 

appliance. They identify a need for an appliance based on personal criteria. They research tech-

nologies and styles that best suit their practical and aesthetic needs. Finally, they interact with 

a store display and talk to a salesperson. How can we preserve this process? The consumer 

behavior is extremely difficult to collect. The Memories project attempted to assemble docu-

mentation from various sources. Marketing material, magazines, popular kitchen websites, and 

online advice offered some evidence. This type of documentation was also relatively simple to 

preserve either as textual material or downloads. YouTube proved most helpful in sourcing videos 

of customers shopping for appliances and talking about their purchases. Most appliance stores 

are fitted with security cameras. The footage from such cameras would offer future researchers 

a unique glimpse at customer behavior and their interactions with the display, the store staff, 

and each other. However, access to shop videos is complicated by the fact that they are not only 

regularly erased by stores but also subject to privacy laws. Although difficult, acquisition of such 

material for the collection is ultimately worth the effort. To comply with privacy regulations, the 

exact date and time of the videos can be erased, and the identity of shoppers can be concealed. If 

necessary, the curator may request that the material be acquired for research purposes only and 

never exhibited or that the videos are sealed for a period of time. 

	 To engage Canadians in talking about kitchen appliances that they own and use, the CSTMC 

organized a social media campaign. The campaign invited Canadians to send photographs of 

their kitchens to the CSTMC and to tell stories associated with kitchen appliances (Figure 8). The 

public responded via email, Twitter, Facebook, and a dedicate Flickr group page. The majority 

of contributions came through Twitter and email.12 Tweets, which generally included a snapshot, 

were short but meaningful: “This is my city kitchen - I think of it as my laboratory. The shiny red 

#kitchenAid mixer was used to make scones this morning.” An attached photograph showed a 

color-coordinated kitchen in red and gray. A KitchenAid mixer, the third most frequently sug-

gested appliance in the crowdsourcing phase of the project, was neatly displayed in the counter 

with a spot light directly above it. Email submissions were longer and included one or more 
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photographs and kitchen plans. The stories were often nostalgic and recalled memories of cook-

ing with a mother or a grandmother. Some submissions, such as this email from Joana, included 

valuable details that allowed for a better appreciation of the organization and the workflow in a 

contemporary kitchen: 

	 “It is a fully functional kitchen, with good appliances, laminate flooring, lots of natural light 

and ventilation, and plentiful storage. Basically, I am using the U-form storage like this: down 

cabinet near the fridge: pots, pans and cooking trays; upper cabinets near the fridge: everyday 

plates, cups and glasses, plus coffee, tea and sugar; near the stove: each of the three drawers have, 

respectively, cutlery, cooking utensils and wiping cloths. . . . The white wall functions as a large 

pantry where I keep everything from morning cereal, lunch snacks, potatoes, flour, rice, herbs to 

fine china and crystal glasses. I walk a lot in this kitchen when cooking (maybe it’s a good thing 

given that I’m not a gym-goer!).”

	 The submitted stories conveyed very personal attitudes and perceptions on Canadian 

kitchens and corroborated the trends noticed during the crowdsourcing. The images provide 

excellent evidence of styles and aesthetic of an average Canadian kitchen in the 2010s, in-

cluding kitchens in new houses, older kitchens, and newly renovated kitchens. Both the sto-

ries and photographs complement the suggestions sent during the crowdsourcing exercise and 

complete supplementary documentation gathered in the Memories Are Made in the Kitchen 

initiative. 

8. 
One of very few photographs submitted to the Memories Are Made in the Kitchen project that shows appliances after use. 
Most images depicted freshly cleaned kitchens.



148 � Chapter 9

Conclusions
At the end, this pilot project in contemporary collecting, although time-consuming and requir-

ing resources from various divisions within the CSTMC, met its goals. It allowed the CSTMC 

to select interesting new kitchen technologies and bring the food preparation technology collec-

tion up to date. It also allowed the corporation to extend its collection of domestic technologies, 

heavily focused on the electrification of Canadian homes, to include evidence of a shift in the 

kitchen semantics that is taking place in the early twenty-first century. Ultimately, Memories Are 

Made in the Kitchen assembled a large collection of data that combined material culture with 

digital, textual, audio, and visual documentation in order to take a snapshot of Canadian kitchens 

in the 2010s. 

	 The approach to the contemporary collecting tested in this pilot will inform future collecting 

projects. As mentioned at the beginning of this chapter, artifact acquisition and documentation 

in the area of domestic technologies are relatively simple compared to other sectors of Canadian 

technology. We can expect that challenges encountered in the project such as limited response to 

crowdsourcing, acquisition costs and deadlines, difficulty accessing proprietary data, and privacy 

issues will become only more complex when dealing with other subjects. Any future contempo-

rary collecting projects will require considerable time and financial and human resources and can 

succeed only with full institutional support. 

Notes
  1.	 Canada Science and Technology Museums Corporation, Collection Development Strategy (Ottawa: Canada Science and Tech-

nology Museums Corporation, 2006), 3.

  2.	 There is some evidence of this response in the visitor evaluations conducted by the corporation. The CSTMC’s target audience, 
families with children, found an exhibition on nuclear fusion and fission intimidating and would leave the display almost imme-
diately after entering the space. This response was largely due to the interpretive approach, which focused on physics and pure 
research rather than applications and social relevance of nuclear fusion and fission projects. 

  3.	 To ensure that the motivation behind this acquisition was clear to future researchers, the curatorial decision-making process has 
been recorded in a written and archived acquisition proposal for the artifacts, which has been presented to the CSTMC Acqui-
sition Committee. 

  4.	 Floating Path, “Global Penetration Rate in Appliance Market,” 17 July 2013, http://​www​.floatingpath​.com​/​2013​/​07​/​17​/​global​
-penetration​-rates​-of​-home​-appliance​-ownership/ (accessed 30 April 2014).

  5.	 R. Schwartz Cowan, “The Consumption Junction: A Proposal for Research Strategies in the Sociology of Technology,” in The 
Social Construction of Technological Systems, edited by Wiebe Bijker, Thomas Hughes, and Trevor Pinch (Cambridge, MA: MIT 
Press, 1987), 261–280. 

  6.	 Euromonitor, “Food Preparation Appliances in Canada,” January 2013, http://​www​.euromonitor​.com​/​food​-preparation​
-appliances​-in​-canada​/​report (accessed 30 April 2014).

  7.	 Natural Resources Canada, Survey of Household Energy Use (Ottawa: Natural Resources Canada, 2007).

  8.	 This shift in meaning of food preparation is reflected in and propagated by magazines such as Chatelaine, Canadian House 
and Home, and Style at Home, as well as a number of popular television shows such as MasterChef Canada. The shift is also 
reinforced by numerous food preparation and decorating classes, which are often run by large chain stores such as the arts and 
crafts store Michaels or the grocery business Superstore. 

  9.	 C. Tully, “10 Items Every Kitchen Needs,” Style at Home, 28 October 2008 http://​www​.styleathome​.com​/​kitchen​-and​-bath​/​
kitchen​/​10​-items​-every​-kitchen​-needs​/​a​/​426 (accessed 30 April 2014). House of Innovations was a yearlong project conducted 
between June 2011 and June 2012 by Canadian Tire, one of the largest retailers, to educate Canadians on house renovation 
techniques and the newest appliances available on the market. The project’s website, HouseofInnovations​.ca, is no longer 
valid. 

10.	 Natural Resources Canada, Survey of Household Energy Use, Table 6.7.

11.	  Euromonitor, “Food Preparation Appliances in Canada.” 

12.	 One drawback of soliciting images via social media is the fact that photographs are generally taken with a cell phone and are 
of low quality. They provide research evidence but are not useful for exhibitions or publications.

http://www.floatingpath.com/2013/07/17/global-penetration-rates-of-home-appliance-ownership/
http://www.floatingpath.com/2013/07/17/global-penetration-rates-of-home-appliance-ownership/
http://www.euromonitor.com/food-preparation-appliances-in-canada/report
http://www.euromonitor.com/food-preparation-appliances-in-canada/report
http://www.styleathome.com/kitchen-and-bath/kitchen/10-items-every-kitchen-needs/a/426
http://www.styleathome.com/kitchen-and-bath/kitchen/10-items-every-kitchen-needs/a/426
http://HouseofInnovations.ca
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CHAPTER 10

Preserving Norway’s Oil Heritage

Introduction
Since 1971, hydrocarbons have been produced 

from deep under the Norwegian continental shelf. 

In order to receive and process the “black gold,” 

huge structures have been built, transported, and 

installed on the seabed in water depths ranging 

from 60 to 1,000 m. These giant platforms and sub-

sea installations have made it possible for Norway 

to become a wealthy and prosperous nation.

	 Toward the end of the twentieth century, some 

of the hydrocarbon reservoirs were being emptied, 

and plans were made for the platforms to be de-

commissioned and removed. Given the size of the structures, it was not feasible to store them 

anywhere close enough for the public to visit. Instead, the Norwegian Petroleum Museum has 

created documentation projects, establishing an archival solution for preserving sources, with the 

emphasis on drawings, photographs, film, publications, objects, interviews, and other material. 

Digital databases represent the principal medium for storing these sources. So Norway’s oil her-

itage is now captured online via dedicated websites, as a digital national memory.

Background
Norwegian oil history started after large gas reservoirs were discovered in the Dutch region 

Groningen in 1959 and the geological structures spreading out to sea awoke the interest of the 

big oil companies for the whole North Sea.

	 Nobody in Norway really believed that oil could be found outside our coast since a letter 

from the Norwegian Geological Survey in 1958 stated that “the chances of finding coal, oil or 
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sulphur on the continental shelf off the Norwegian coast can be discounted.” However, interest 

was raised, and several seismic investigations were made in the, at that time international, waters 

of the North Sea in the first half of the 1960s.

	 In 1965, the Norwegian government was convinced, and on 7 August, nine different indus-

trial groups, dominated by the international majors, were given licenses to drill for hydrocarbons 

on a total of 74 blocks. The blocks were all about 500 km2 each, and all were situated south of 62° 

latitude.

	 The spudding of the first well was done 19 July 1966 by the drilling rig Ocean Traveler 

under contract by Esso. The first wells were empty, or the little oil that was actually found was 

not economically profitable.

	 The real history began right before Christmas 1969, however, when the Ekofisk field, which is 

a giant oil and gas field, was found by Phillips Petroleum Company Norway. A speedy development 

project resulted in oil production starting from the Norwegian continental shelf on 9 June 1971.

	 In 1971 the Frigg field was discovered, in 1973 the Statfjord field was found, and in 1975 

the Valhall field was found and so on. Operating companies submitted plans for development and 

operation of the different oil fields to the government for approval, with a predicted production 

period based on how much oil and gas it was possible to produce with acceptable profit. 

	 The available technology in the 1970s and 1980s and the knowledge of the size and compo-

sition of oil-bearing layers suggested the production period would be about 20 years. Operating 

companies or groups were required to set aside money for the decommissioning and removal of 

structures from the outset of the construction phase.1 

	 As we were closing in on the turn of the millennium, some of the oil fields were going to 

close down. Questions arose as to whether the platforms should be scrapped on decommissioning 

or whether aspects should be kept intact and become museums as symbols of Norway’s early oil 

age. The environmental action plan for the petroleum sector produced by the Ministry of Petro-

leum and Energy in 1999 stated the necessity to ensure that important and historical structures 

were preserved and made accessible for future generations, as well as documenting the develop-

ment of government administration.2 

	 Scrapping the platforms was the alternative preferred by the oil companies because it would 

be fast and relatively cheap and was already factored into their plans. Historians and represen-

tatives from museums may have preferred the second alternative—preservation. However, the 

structures were so huge that there was no place to store them anywhere close enough for the 

public to visit. The maintenance would also be very expensive. The largest platform, Troll, is 

almost 500 m tall and weighs more than 1 million metric tons (see Figure 1). The deck areas of 

several of the platforms are the size of more than three football fields! Thus, only one option re-

mained: to document the platforms and the oil fields.

	 In a March 2000 letter to several museums with interests related to the offshore activities, 

the Norwegian Directorate for Cultural Heritage raised a challenge: “What cannot be preserved 

should be documented.”3 Early in 2001 the Norwegian Petroleum Directorate (NPD) wrote a 
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1. 
The Troll platform compared with the Eiffel tower in Paris. Photo: Statoil/Norwegian Petroleum Museum
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letter to the operator of the Ekofisk field urging Philips Petroleum to initiate a study of how such 

a documentation project could be done and indicating that the Norwegian Petroleum Museum 

(NPM) was best fit to perform the task.4 Within a fortnight, Philips Petroleum accepted the chal-

lenge, and the Petroleum Museum delivered a preliminary report by early October.5

	 This was the background for the NPM to start the first oil field documentation project in 

2002, the Ekofisk Industrial Heritage, completed in 2004.6 Since then other fields have been 

documented, and further projects are underway. The aim of the documentation projects has been 

twofold: first, to collect source material to be preserved for future generations and, second, to 

create access to this material via the Internet and books, making it easier to understand technical 

processes and working life and placing the historical material in context.

Choosing Sites for Documentation: 
Ekofisk and Beyond
Ekofisk occupies a central place in Norway’s petroleum history as the first producing oil and gas 

field on the Norwegian continental shelf. The original owners were the Phillips Group, consisting of 

the Phillips Petroleum Company, Norske Fina A/S, and Norsk Agip A/S, with Phillips Petroleum as 

the operating company. Today, the owner group (the License) consists of ConocoPhillips Skandina-

via AS, Eni Norge AS, Petoro AS, Statoil Petroleum AS, and Total E&P Norge AS, with ConocoPhil-

lips as the operating company. The industrial heritage project was funded by the License (Figure 2).

	 The Ekofisk field is situated on the border between Norway, the United Kingdom, and 

Denmark. Originally, the field was planned to operate for 30 years, but new technology and new 

discoveries of oil and gas in the area have made it possible to prolong the life of the field toward 

the middle of the twenty-first century. More than 30 installations (platforms, tanks, subsea units, 

etc.) have been installed on the field, but only half of them are still in use. Up until 1 January 

2013 the total production from the Ekofisk area amounted to the equivalent of more than 5 billion 

barrels of oil—oil, gas, and natural gas liquids combined (Figure 3).

	 Following the completion of the Ekofisk Industrial Heritage Project, three other similar 

documentation projects were introduced: Frigg (completed in 2008),7 Statfjord (completed in 

2012),8 and Valhall (completed in 2015). The projects were realized thanks to financing from the 

owner group of each field.

	 Because of the large number of installations in the Ekofisk field only six platforms were 

chosen to give a representative and detailed picture of field’s development. For Frigg, Statfjord, 

and Valhall, which have fewer installations, all platforms were documented.

2. 
The logo for the Industrial Heritage Ekofisk website.
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Priorities and Plans
How did NPM select which of the many fields to document? The first two, Ekofisk and Frigg, 

were the obvious candidates. Ekofisk was the very first oil-producing field on the Norwegian 

continental shelf, whereas Frigg, now totally decommissioned, was a major gas field on the border 

with Great Britain and an important supplier of natural gas to British homes. Since the Frigg field, 

operated by a French company, was part of both the U.K. and Norwegian continental shelves, it 

was of particular interest and allowed for collaboration with the University of Aberdeen on the 

documentation project.9 The British archivists wanted to learn from the Norwegian experiences 

with documenting the Ekofisk field, which was the first documentation project of its kind. 

	 In Scotland a network called Capturing the Energy was established in 2006 to encourage 

oil and gas companies to keep their most important records, ensuring that they could be safely 

stored in an archive repository, so that they could be made accessible for current public research 

and for future generations.10 In 2009 European Oil & Gas Archives Network (EOGAN), a Euro-

pean network of archives and cultural institutions related to oil and gas, was founded, with the 

purpose of promoting preservation and usage of relevant archives and sharing skills and experi-

ence.11 The Norwegian Petroleum Museum is one of the participants.

	 During these early stages, NPM suggested to the Ministry of Petroleum and Energy (MPE) 

and the Norwegian Oil Industry Association (NOIA) that there should be a national industrial 

heritage plan.12 An estimated project cost of 2.8 million Norwegian kroner (about 350,000 euros) 

was proposed, with a suggested split between the two institutions.13 In September 2004, the 

3. 
The Ekofisk Center, 1976. Photo Michael Davis/ ConocoPhillips/Norwegian Petroleum Museum.
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NPM was commissioned by the MPE, NPD, and NOIA to draw up such a plan. A necessary 

starting point for conserving industrial heritage is that the industry in question has a satisfactory 

overview of what it administers and how it is to be conserved. In 2010, this resulted in a book 

covering all 92 fields that had been developed since 1971.14 Both the project management and the 

production of the book were handled by the NPM.

	 An important element in the production of the industrial heritage plan was the early intro-

duction and formation of a steering and reference group consisting of 10 people with outstanding 

experience in many different aspects of the oil industry and with professional museum and his-

torical backgrounds.15 The group’s main task, apart from ensuring the quality of the final product, 

was to establish significant selection criteria for choosing facilities to be defined as industrial 

heritage monuments. Their final criteria were as follows:

•	 installations representing different development eras

•	 the first, most important, or most representative technology

•	 installations illustrating the breadth in development solutions or platform types

•	 special projects (i.e., CO2 removal, subsurface production from satellite fields)

•	 installations unique in a Norwegian or international context

•	 economic significance

•	 social significance

•	 special historical events associated with the installations

•	 political decisions and debate over the development

	 Using these criteria, the project’s steering and reference group conducted an integrated 

assessment of all potential fields. They came up with lists of priority areas (in alphabetic order); 

the A list includes the following:

•	 Ekofisk area (project completed 2004)

•	 Frigg area (project completed 2008) 

•	 Oseberg area

•	 Snøhvit

•	 Statfjord area (project completed 2012)

•	 Troll area

•	 Valhall area (project completed 2015)

•	 Åsgard area

The B list contains these areas:

•	 Balder area

•	 Draugen

•	 Grane

•	 Gullfaks area
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•	 Ormen Lange

•	 Snorre area

•	 Ula area

	 In addition, the rest of the fields that were producing at that time were given either C or D 

priorities. Since the introduction of the Industrial Heritage Plan, several fields have been devel-

oped and discovered, and there are now more than 100 fields producing hydrocarbon from the 

sectors along the coast of Norway: the North Sea, the Norwegian Sea, and the Barents Sea. How 

to update the priority list has not yet been decided, but the museum cooperates with NPD to 

compile an updated map of the operating fields, and the map is also on display in the museum.16

Digital National Memory
Documentation highlights the physical structure above the water and on the seabed, including 

wells, exteriors, interiors, machinery and equipment, and major modifications (Figure 4). It also 

includes descriptions of the work processes, work environment, and effects on the economy, 

politics, and society. The projects also include documentation of the characteristic features of 

the development of the field, such as technological development, special projects, historical 

events, negotiations and decisions that underlie development decisions and options to expand, 

political decisions, and debates related to the development. Each industrial heritage project 

4. 
Illustration from the Industrial Heritage Statfjord.
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could include an article about the geological structures containing the hydrocarbons forming 

the basis for the development of the fields. However, this might be sensitive information for the 

oil companies.

	 About a year before a project is completed, the museum makes a decision on which field 

from the A or B list is to be targeted next. We try to choose different operators in order to be 

able to document the differences in practices and procedures among the large international oil 

companies. The museum has established an archival solution for preserving sources, with the 

emphasis on documents, reports, drawings, photographs, film, publications, objects, interviews, 

and other material. Digital databases represent the principal medium for storing these sources. 

	 It is essential to collect source material that represents complementary ideas and opinions. 

In the selection of source material, it is important to be aware that the documentation will form 

the basis for future research and dissemination. The projects have utilized original sources and 

made an extensive selection of these materials in order to present comprehensible documenta-

tion of the oil fields. In addition to the help of the operating companies of each field, these proj-

ects have been made possible only through close cooperation with the Regional State Archives in 

Stavanger, the National Archives of Norway, and the National Library of Norway. 

Archives
The Regional State Archives in Stavanger (RSAS) has devised its own criteria for the selection of 

the companies’ archive material from a field’s history to document the development and opera-

tion offshore and parts of the land-based activities. Material not found elsewhere has been given 

priority, whereas information being preserved by the NPD and the MPE has not been selected. 

Basically, the operators’ company archives fill several thousand shelf meters, but  the RSAS has 

selected to store only a few hundred shelf meters of information for the documentation projects. 

Through organization and registration duplication has been reduced. The catalog to the archive 

is available online, and perhaps a reflection of the transparency of Norwegian culture, the RSAS 

has even been allowed to present some material that could be considered commercially sensitive 

on the web. For instance, original reports from board meetings at Mobile Oil Corporation in 

Houston, Texas, regarding the Statfjord projects are included. 

	 Drawings are a separate category within the archives. From the thousands of original draw-

ings the National Archives has selected a few hundred. Saving different types of drawings such 

as flow diagrams, artist’s impressions, arrangement drawings, geological maps, well descriptions, 

etc., has been important. 

Objects
Through the documentation projects, several hundred physical objects have been gathered and 

stored at the NPM. Examples of such items include a large number of models, signs and posters 

from the platforms, and control panels, to mention a few. All the objects are described, photo-

graphed, and registered in a special database called Primus.17
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	 The exhibition uses many models to show how platform design has developed, but we also 

want to show real objects to give a feeling of the dimensions in the industry. The heaviest piece 

placed inside the exhibition is a compressor from one of the Statfjord platforms (weighing about 10 

tons; Figure 5). It has a special story. To be able to get the gas through the pipeline all the way to 

the west coast of Norway, the gas coming from the wells had to be under high pressure for the gas 

to reach shore. Several compressors were installed on the platform to achieve this. Today, gas from 

Statfjord is shipped through pipelines to the United Kingdom, and the compressors are no longer 

needed. Before the compressor was taken to the museum, donated by the License, it was cut open 

to make it possible to see the inside and make it easier to understand how a compressor works.

	 Having enough storage space in the external magazines is a challenge. Some items are too 

large to go inside the museum or even the magazine buildings and have to be exhibited outside 

the building. Some of them, for example, one of the jacks from Ekofisk, tell great stories. The jack 

5. 
The Statfjord gas compressor on display at the Norwegian Petroleum Museum. Photo: Jan A. Tjemsland/ Norwegian 
Petroleum Museum.
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is unique because it symbolizes a great accomplishment by the engineers. In 1987, 19 jacks were 

used to simultaneously raise all the platform decks on the Ekofisk Center and extend the legs 

6 m due to subsidence of the total field. The operating company paid for the installation of one 

jack outside the museum in 2004 as part of the exhibition marking the opening of the Industrial 

Heritage Ekofisk website. 

	 Between 2008 and 2013, an 80-ton piece of the bridge from Frigg leading from the Norwe-

gian to the British continental shelf was on display in front of the museum. The exhibited piece 

was the exact part of the bridge that contained the actual border between Norway and the United 

Kingdom, thus illustrating the fact that the Frigg field was part of both countries’ continental 

shelf. On this bridge, people had been able to walk from Great Britain to Norway! The operating 

company Total paid to place the bridge outside the museum but did not want to assume the cost 

of maintenance for more than five years. The museum did not have storage space for this big 

object and could not afford the maintenance costs, so unfortunately, we had to scrap it in 2013.

Bibliography
Documentation of an industrial plant means that consideration should also be given to material 

that is not directly related to field development and operation. References to books, reports, and 

newspaper articles set the development and operation in a wider historical context.

	 In order to secure access to published material about Ekofisk, Frigg, Statfjord, and Valhall 

NPM has collected a number of magazines, reports, and published articles and forwarded them 

to the National Library for scanning and optical character recognition to make them searchable. 

These publications can now be accessed through the Internet. All the books related to the oil 

field projects are registered and made searchable on the websites. Some of them can be read in 

full. For the Frigg Norwegian-British project a special book, Crossing Boundaries: Frigg Indus-

trial Heritage, was published.18 Articles from the projects have also been published in the NPM’s 

yearbooks.19 

Audiovisuals
Much of the history is documented in the form of archival material, which is either already in 

digital form or can be transferred to digital form, such as photographic and film material.

	 Close to 20,000 photographs can be found on the websites for Ekofisk, Frigg, Statfjord, and 

Valhall. They range from aspects of building sites, full views of platforms during installation, 

interiors, portraits, and scenes from life on board the platforms during both work and leisure 

periods. The NPM’s own photographers have been offshore to take pictures in addition to col-

lecting pictures from the archives of the oil companies and private photographs taken by offshore 

employees (Figure 6). The private pictures are especially interesting since they often present a 

different aspect of life on board than the official photographs. Metadata for all of the pictures have 

been registered and can be searched from the websites. The photos can also be found through the 

Internet portal Europeana​.eu​.20

http://Europeana.eu.20
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	 Film is an interesting source category with the ability to tell vivid stories. A couple of hun-

dred movies are now available on the websites. The films have been digitalized and registered 

in a special database program by the National Library. The archives of the Norwegian National 

Broadcasting Company (NRK) provide another unique source that can convey the attitude to-

ward oil field exploitation during different periods. The National Library has stored a large num-

ber of radio and television clips related to the history of the different oil fields that can be found 

through the websites.

6. 
Celebrating 17 May, Norway’s Constitution Day, on board Ekofisk. Photo: Karianne Knutsen/
Norwegian Petroleum Museum.
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	 The documents in the collection are in a wide variety of media and formats. In many cases, it 

will be necessary to take special precautions to ensure that the documents, including digital doc-

uments, photographs, and original movies, are not damaged or become inaccessible over time. 

Digitally stored material must be preserved in such a way that it can migrate to other formats as 

new storage media develop. Management of this diverse material therefore requires a thoughtful 

and robust document management solution. The National Library of Norway has adequate sys-

tems, procedures, and strategies for managing documents and digital objects, as well as preserva-

tion and retrieval of these, and has also built a physical digital repository to protect and preserve 

digital objects in the long term.21 

Oral Histories
The NPM has made an attempt to preserve some immaterial heritage by interviewing a number 

of people with personal experience working offshore. Historians at the NPM conducted the inter-

views. The Ekofisk project also involved a social anthropologist from the University of Bergen.22 

All interviews were recorded, transcribed, and filed at the museum, but as they may contain 

sensitive information, only an excerpt is available on the cultural heritage websites. Researchers 

who want to study a whole interview can do so by asking the museum. 

	 Through the interviews new unique source material was created. To provide a broad 

picture of work on the oil fields, we selected individuals with a wide range of professional 

careers, such as geology, drilling, well technology, production, communication, maintenance, 

and offshore support services like safety, medical care, and catering. For the Statfjord proj-

ect, people with experience related to the engineering and construction of the platforms were  

interviewed. 

	 Interviews were also conducted with persons representing the various trades and occu-

pations offshore, as well as management and labor unions. This cross section provides different 

viewpoints about particular incidents and information about important development steps and 

organizational changes that is more in depth than that found in the documentation projects as a 

whole. Emphasis has been placed on finding respondents who have extensive experience in each 

company and who know the organization well. The interviews reflect personal beliefs related to 

the interviewee’s own professional experiences. 

Types of Materials and Volumes
The material for each documented field made available for the Norwegian Petroleum Museum 

to use is extensive. Table 1 indicates the total number of sources and how much information is 

typically presented on the website. Table 2 shows a summary of the different available items for 

each documentation project.

	 Lessons learned from the earlier projects have shown that it is crucial to the quality of 

the project for it to be completed while the fields are still in operation and there are still peo-

ple who have personal experience from the fields’ pioneer periods. This timing ensures finding 
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documentary sources and gathering firsthand testimony from people who were central to the 

work of the development and operation of the fields.

Making the Industrial Heritage Available
The histories of the fields, installations, work processes, daily life on board, and economic and 

social effects on Norwegian society are presented in a well-organized and vivid manner on the 

dedicated websites for the industrial heritage of Ekofisk, Frigg, Statfjord, and Valhall.23 

	 Presentations in the form of editorial texts are used as a gateway to understanding how field 

installations, workplaces, important historical events, and the economic and social consequences 

for each field have developed. Around 250 articles were written for each project, many accompa-

nied by linked media elements (photography, film, drawings, etc.) drawing on the original source 

material in the databases. The researchers at the museum have written the majority of these 

articles, although some were written by specially commissioned external experts when there was 

a requirement to cover special disciplines or technologies beyond the scope of NPM’s expertise. 

Table 1. 
Available sources of information for use in a typical industrial heritage documentation project.  
N/A = not applicable.

Source	 Number of sources available	 Number selected for use

Archives (letters, reports, etc.)	 5,000–10,000 shelf meters	 200 shelf meters
Technical drawings	 200,000	 500–1,000
Photographs	 10,000–15,000	 5,000
Films and videos	 100 titles	 100 titles
Audio files	 100	 100
Publications (books, pamphlets, etc.)	 5,000 pages	 5,000 scanned pages
Illustrations (maps, artists’ impressions, etc.)	 1,000	 350
Operating manuals	 500	 50
Interviews	 N/A	 30–50
Objects	 N/A	 >100

Table 2. 
Items found for the three completed industrial heritage projects.

	 Project

Items	 Ekofisk	 Frigg	 Statfjord

Published articles	 279	 188	 266
Photographs	 4,037	 4,604	 5,222
Books	 390	 169	 1,425
Films	 104	 52	 93
Objects	 291	 308	 68
Audio clippings	 95	 22	 50
Magazines/pamphlets	 24	 608	 552
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All of the editorial presentations except for those of the Ekofisk project have been translated from 

Norwegian into English. 

	 All of the industrial heritage project websites can be accessed from the NPM site.24 The 

websites are usually organized around six main themes:

•	 the field: geology and the reservoir, production strategy, transport solutions

•	 installations: platforms, subsea templates, pipelines (see Figure 5)

•	 timeline of key events

•	 the production process: work and leisure

•	 economy and society: value, technology, impact on subcontractors, politics, etc.

•	 search function for the databases

None of the industrial heritage websites are alike, even though they have been created using the 

same general pattern. The museum has tried to give each website a special focus: The Ekofisk 

site focused on the technology, the jobs, and the people that made the history. The Frigg project 

focused more on the cooperation between the workers and the technology and the fact that the 

gas field was on the border between Norway and the United Kingdom. For the Statfjord industrial 

heritage project, we looked more at the fabrication of the installations and Norwegian influence. 

Of course, the special geology of each field caused different challenges for the operating compa-

nies. The cultures of the operating companies were also looked at, and the American (Ekofisk), 

French (Elf/Total) and Norwegian (Statoil) companies were given special attention in the projects.

Conclusion
In our roles as creators and distributors of knowledge about Norway’s oil heritage, we regularly 

ask ourselves whether these projects are fulfilling their aims. We are aware of projects such as 

the Historic American Buildings Survey/Historic American Engineering Record in the United 

States and Völklingen Ironworks in Germany, but their focus is mainly on the visible buildings 

and artifacts.25 Our projects focus on the intangible heritage and are already proving fruitful for 

both researchers and the general public and are more in line with the website of the Branobel 

History.26

	 The most important task is to select and preserve materials concerning this important pe-

riod of Norwegian history for future generations. In this regard we are confident that the projects 

are successful. 

	 For the task of public dissemination of information on each specific oil field project, each 

website launch is accompanied by a temporary exhibition at the museum (Figure 7). Previous 

exhibitions have been popular, and visitor traffic to the websites has been encouragingly high (see 

Table 3).

	 We do not monitor the sites for cultural heritage, but we know from inquiries that many 

journalists from newspapers, television, and radio have used the sites. Students from universities, 

colleges, and high schools have also approached the museum to find relevant information for 
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theses of different kinds. Some textbooks also cite information from the sites, including a Norway 

history series from 2011, Norvegr.27 

	 Documentation projects have been presented at several conferences for technology history: 

The Society for the History of Technology, The International Committee for the Conservation of 

the Industrial Heritage, Tekna (the Norwegian Society of Graduate Technical and Scientific Pro-

fessionals), Norwegian Technical Museum, and Capturing the Energy (Scotland). In connection 

7. 
Photo from the exhibition introducing the Industrial Heritage Frigg. Photo Jan A. Tjemsland/ Norwegian Petroleum Museum.

Table 3.
Visitors to industrial heritage websites. A dash (—) indicates the site was not yet in operation for  
a particular year.

	 Visitors

Site	 2009	 2010	 2011	 2012	 2013	 2014	 2015	 2016

Ekofisk	 13,847	 31,683	 32,149	 33,145	 27,571	 20,967	 16,801	 12,996
Frigg	 7,824 	 13,282	 10,951	 9,167	 7,200	 7,019	 5,861	 4,121
Statfjord	 —	 —	 —	 1,041	 5,478	 5,098	 1,725	 1,066
Valhall	 —	 —	 —	 —	 —	 —	 2,533	 7,782

Total	 21,671	 44,965	 43,100	 43,353	 40,249	 33,084	 26,920	 25,965
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with the Frigg project, we collaborated with the University of Aberdeen, which has largely used 

our method but on a smaller scale since they documented only one platform. 

	 We have also been working with the Norwegian Water Resources and Energy Directorate 

for their four books on different types of cultural heritage items. Our way of documenting major 

industrial monuments has been presented to Norsk Vegmuseum (Norwegian Road Museum), 

which also has plans to document large-scale issues. In the fall of 2015 the Norwegian Petroleum 

Museum cohosted a conference on documenting health institutions in Norway.

	 Thus, the Norwegian Petroleum Museum’s approach to collecting and presenting the her-

itage of large oil- and gas-producing fields on the Norwegian continental shelf can be useful 

for others. Nevertheless, for everyone it will be a challenge to cope with the technology of the 

computing world. Systems and technology change very rapidly, and to be able to preserve the 

websites, it is important to find the most likely durable solutions for digitalization and presenta-

tion. This choice, of course, also limits the fanciest ways to present the available material. Find-

ing good solutions is very valuable. It makes it possible to have historical material visible on the 

Internet—today, many young people claim that what is not on the net does not exist. 

	 However, we have plans to continue producing industrial heritage projects for a long time. 

The outcomes of such projects, made accessible through the Internet, constitute important digi-

tal national memories of how the exploitation of black gold has shaped modern Norway.
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CHAPTER 11

The Balance between Recent Heritage 
and Ongoing Research
The Case of Jodrell Bank Observatory

Introduction
Jodrell Bank Observatory is one of the world’s 

most significant sites for radio astronomy. The site’s 

signature is the 76-m-diameter Lovell Telescope, 

which dominates the Cheshire plains and embod-

ies the particular challenges of Jodrell Bank. On the 

one hand, the telescope is an enormously histori-

cally significant artifact, famous for tracking Sput-

nik 1 in 1957 and carrying the United Kingdom’s 

highest heritage status. On the other hand, it is a 

working telescope, part of a world-class research fa-

cility that operates 24 hours a day, 365 days a year. 

Similar dualities can be found across the Jodrell Bank site, a unique landscape of the material re-

cord of postwar radio astronomy, but one whose primary raison d’être is continued astronomical 

research. Alongside the needs of the heritage and scientific communities there are those of a third 

group, public visitors, who have been an important part of Jodrell Bank’s strategy since the 1960s.

	 Balancing the three distinct areas of activity at Jodrell Bank—scientific research, science 

heritage, and public engagement—has tended to operate on an informal, case-by-case basis in 

the past. However, with the opening of a dedicated Discovery Centre for public engagement in 

2011 and in light of the recent death of Sir Bernard Lovell, the observatory’s founder and first di-

rector, in 2012, a more formal approach is now being developed to the conservation and curation 

of equipment, layout, and artifacts either located at or related to Jodrell Bank. 
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	 In terms of contemporary collections, this essay sets out the challenges facing the authors, 

who are taking the lead on establishing the curation and conservation of the heritage of Jodrell 

Bank and balancing this with the other two activities that are central to its identity. We begin by 

providing some background on the site, discuss the challenges posed by each of the three main 

strands of activity, and conclude with a summary of the position at this early stage.

Background
Jodrell Bank and the Development  
of Radio Astronomy
“At the time of the outbreak of the European War in September 1939, radio astronomy did 

not exist as a viable astronomical subject,” wrote Sir Bernard Lovell in his review of the de-

velopment of radio astronomy in the United Kingdom.1 Extraterrestrial radio waves had been 

discovered by Karl Jansky in the United States in the early 1930s, but Grote Reber, also in the 

United States, carried out the only other noteworthy attempts of any measurement of these 

waves during that decade. This led Woody Sullivan, in his comprehensive account of the early 

years of radio astronomy, to claim that “the independent wartime discoveries in England of 

extra-terrestrial radio waves meant that the post-war course of radio astronomy around the 

world would undoubtedly have proceeded much as it did even if Jansky and Reber had never 

made their discoveries.”2

	 As Sullivan describes, work on radar during World War II led directly to the development of 

the four world-leading radio astronomy groups in the postwar decade: Cambridge (led by Martin 

Ryle), Sydney (led by Edward G. Bowen and Joseph L. Pawsey), the British Army Operational 

Research Group at Richmond Park and later at Malvern, Worcestershire (led by James S. Hey), 

and Bernard Lovell’s group at Jodrell Bank. 

	 Lovell, fresh from his wartime work on the development of H2S radar, arrived at the botany 

huts on the University of Manchester’s botanical grounds at Jodrell Bank in December 1945, 

seeking a rural site free from radio interference to use his ex-army radar equipment.3 The site, 

located in a rural area of Cheshire East in open countryside and surrounded by agricultural land, 

proved well suited to his purposes. 

	 Lovell’s original 1945 observations were designed to detect radar echoes from the atmo-

spheric ionized trails of cosmic rays, but he soon realized that the echoes they detected were 

actually from meteors. This discovery led to a major investigation of their properties and origins.4 

	 In order to detect weaker echoes from cosmic ray trails, in 1947 Lovell’s team built what 

was then the world’s largest telescope, the 218-foot Transit Telescope, a fixed mesh bowl that 

pointed toward the zenith. This instrument turned out to be ideal for detecting radio waves from 

the Milky Way and beyond, shifting Jodrell Bank’s focus of research from studies of relatively 

nearby phenomena, such as the radar work on meteors, to what soon became known as radio 

astronomy: the study of the wider universe.5 Lovell’s colleague Hanbury Brown, together with 



170 � Chapter 11

Cyril Hazard, used the Transit Telescope to detect radio waves from the Andromeda galaxy (the 

first known extragalactic radio source) and the remnant of Tycho’s supernova, not seen since the 

1570s.6 Although it was demolished in the 1960s, traces of this telescope remain alongside its 

control building (“Park Royal”), later used as the control building for the Mark II Telescope (see 

below).

	 The success of the Transit Telescope demonstrated the importance of dishes with a large 

collecting area, so plans were made for an even larger, but fully steerable, instrument. Construc-

tion of the Mark I Telescope began in 1952. When completed in 1957, it was the world’s largest 

telescope, taking over from the Transit Telescope.7 Its first scientific act was to track by radar the 

carrier rocket of Sputnik 1. It was then the only instrument in the world capable of doing so.8 

With various modifications, including new surfaces in 1971 and 2002, the Mark I, now known as 

the Lovell Telescope, is still the third largest fully steerable telescope in the world.

	 From the early 1950s into the 1960s, first Hanbury Brown and then others at Jodrell Bank, 

including Roger Jennison and Henry Palmer, developed the technique of long-baseline radio-

linked interferometry.9 This development was a response to the problem of determining the an-

gular sizes of radio sources discovered in large sky surveys. Individual radio telescopes operate 

at long wavelengths and hence have poor resolving power, a rather blurred view. The larger the 

telescope is, the better this resolution is and the sharper the view is, but it was not possible (nor 

is it now) to build a single dish much larger than the Mark I radio telescope at Jodrell Bank. The 

solution was to combine signals from pairs of separated telescopes or antennas in an interferome-

ter. The angular resolution could then be improved to that of a virtual telescope whose diameter 

was equal to the separation of the most widely spaced elements of the interferometer. The Jodrell 

group concentrated on the longest separations (or baselines) and highest angular resolutions by 

taking mobile antennas to remote locations across the country and bringing their signals back to 

Jodrell Bank with radio links. This work played a key role in identifying many of the radio sources 

as quasars, distant galaxies powered by supermassive black holes.

	 The developments of long-baseline interferometry have continued to the present day with 

the e-MERLIN network, an array of seven radio telescopes across the United Kingdom initially 

connected by radio links and now by optical fibers. This array includes the Lovell and Mark II 

telescopes. The signals from all seven telescopes are combined at Jodrell Bank, so that the array 

operates as if it is a single telescope 217 km in diameter, providing a resolving power similar to 

that of the Hubble Space Telescope. Even farther afield, Jodrell plays a major role in very long 

baseline interferometry (VLBI) networks linking radio telescopes across the planet and even 

into space.

	 Jodrell Bank also hosts the headquarters for the world’s next great radio telescope, the 

Square Kilometre Array (SKA). With telescope sites in Australia and South Africa, SKA will be 

built on the principle of long-baseline interferometry using optical fibers connecting thousands of 

dishes and millions of other antennas. Hence, e-MERLIN is a pathfinder for this ambitious new 

global project, and the Jodrell group is leading work on signal and data transport for SKA. 
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The Site Today
Jodrell Bank’s continuous use for radio astronomy from the subject’s postwar rebirth in late 

1945 to the present day has left a unique landscape. An indicative layout of the site is shown 

in Figure 1.

1. 
Layout of the Jodrell Bank Observatory site (edged in red). Various current and heritage features are labeled. Courtesy of The 
University of Manchester.
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	 Since Lovell set up his first experiment at the most southerly part of the 35-hectare site, ac-

tivity has moved northward with many new instruments constructed across the site as the field of 

radio astronomy developed. Although much of the early equipment was demolished or reused in 

subsequent instruments, remains of some equipment still survive either above or below ground, 

as do the buildings in which the research took place. These remains have effectively laid down 

the history of the development of radio astronomy on the landscape, from its inception to the 

present day. 

	 The most prominent feature of the observatory is the Lovell Telescope. At 76 m in diameter 

and standing 89 m high, it dominates the Cheshire plains (Figure 2). The original bowl of the 

telescope was made of welded mild steel sheets supported on a steel frame. The bowl tips in ele-

vation on gear racks that were recycled from gun turrets of two warships, HMS Royal Sovereign 

and HMS Revenge, which were both decommissioned at the end of World War II. In 1971 a new 

2. 
The Lovell Telescope at Jodrell Bank viewed from the Roaches in the Peak District. The cathedrals in Liverpool can be seen 
on the skyline 40 miles away. Courtesy Anthony Holloway.
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reflecting surface was installed above the original surface, and the support structure was signifi-

cantly strengthened, including a new central track to support around half the weight of the bowl. 

This new surface was itself replaced in 2001–2002. Each upgrade has increased the capability of 

the telescope for scientific research.

	 Although the Lovell Telescope is the most publicly recognizable part of the Jodrell Bank site, 

it effectively represents the culmination of the work that went before it, and many other elements 

of the site are highly important in terms of its heritage. For example, the Mark II Telescope, built 

in 1964, was the first telescope in the world to be controlled by a digital computer.10 The Mark II 

sits on the site of the 1947 Transit Telescope, which is no longer in existence, although traces of 

it remain below ground. The building known as Park Royal that housed the Transit Telescope’s 

receivers was subsequently used as the control room for the Mark II. Remnants of the earliest 

meteor radar systems also remain on the site, as do the first significant buildings that marked its 

transition from a temporary field station to a long-term scientific establishment.

	 The site also includes the purpose-designed “Control building,” which was conceived to 

oversee the Lovell Telescope and provide lab, reception, and office space for the burgeoning site. 

Today, this building is the hub of the UK e-MERLIN network. Alongside the control building is 

the office for the international headquarters of the Square Kilometre Array.

Challenges
Developing a Culture of Preservation  
and Conservation
Although Jodrell Bank is a leading heritage site for radio astronomy, it is first and foremost a 

working observatory, prioritizing current research over the preservation of early equipment or 

other artifacts generated in the process of developing the field. This prioritization has resulted 

in a “progression” of technologies moving northward across the site, as the scientists abandoned 

early experiments and moved into new space to build new equipment. 

	 The fact that the site is wholly owned by the University of Manchester has ensured that 

traces of the early work carried out on the site, including some “archaeological” remnants of 

early equipment, still remain. The telescopes and equipment still in use at the site are covered 

by a meticulous maintenance regime. Existing buildings and infrastructure are repaired and de-

veloped as necessary, whereas new buildings, for example, the SKA headquarters and public 

Discovery Centre, are constructed. In order to ensure that the ongoing maintenance necessary to 

keep the site scientifically operational does not overwrite the historical material record, the site’s 

custodians have sought formal heritage recognition for key apparatus and the site itself.

	 In 1987, the Mark I Telescope was renamed the Lovell Telescope in honor of its creator. It 

was given Grade 1 listing, the highest possible conservation status awarded in the United King-

dom, by the statutory conservation body Historic England in 1988. This step was the first toward 
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formalizing the preservation of the telescope and the first formal recognition of the importance of 

the site’s heritage. The listing in the National Heritage List for England reads

Radio Telescope. Built 1952–57. Designed by engineers Husband and Company of Shef-

field to the requirements of Sir Bernard Lovell. Bowl of welded sheet steel, carried on a 

space frame of structural steel. Paraboloid bowl of 250 feet in diameter, with supporting 

lattice triangles to left and right of 180 feet high, braced to form a yoke under the bowl and 

mounted on a track of 2 concentric rails of an overall diameter of 353 feet. The Sir Bernard 

Lovell Telescope (formerly known as Mark I) was the largest fully steerable radio telescope 

in the world of its time.11

The Grade 1 listing describes just the telescope structure; however, in 2010, the University of 

Manchester applied for the site to be included on the United Kingdom’s Tentative List for UN-

ESCO World Heritage Site status. 

	 The decision to do this was taken largely because of a growing awareness of the importance of 

the site in the development of radio astronomy and modern astronomy in general. The fact that the 

site has been in continual operation since 1945 has resulted in it being viewed almost exclusively 

as a working observatory. However, the celebration of the 50th anniversary of the Lovell Telescope 

in 2007, which gathered together many alumni of the site with international colleagues and incor-

porated a number of public events, stimulated a new appraisal of the historical importance of the 

site. We are fortunate that a few scientists and engineers from the early days of this field, including 

some at Jodrell Bank, are still able to augment existing records of its development, and a number 

of historical research activities are ongoing (including the work of Woody Sullivan as part of the 

National Radio Astronomy Observatory Archives).12 There is a clear need to engage stakeholders, 

the wider public, and a younger generation in the heritage of science and its cultural contribution. 

Inscription of places such as Jodrell Bank as World Heritage Sites will undoubtedly help. 

	 The application to place Jodrell Bank on the UK Tentative List occurred within the context 

of the heritage sector recognizing that it has not embraced the history and heritage of science 

to the extent that it has other areas of culture. For example, the International Council on Monu-

ments and Sites (the advisory body of the World Heritage Committee for the implementation of 

the World Heritage Convention of UNESCO) designated the theme for the 2009 International 

Day for Monuments and Sites as “Heritage and Science,” with the intention of promoting science 

as a new category of heritage.

	 Several other observatories are included on the Tentative Lists of Member States, but all 

are optical observatories. However, a number of radio astronomers are conducting exercises in 

research and communicating their heritage. Most notably, there is a working group of the Inter-

national Astronomical Union devoted to historic radio astronomy whose aims include assembling 

and maintaining a master list of surviving historically significant radio telescopes and associ-

ated instrumentation found worldwide, coordinating and documenting the technical specifica-

tions and scientific achievements of these instruments, maintaining an ongoing bibliography of 
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publications on the history of radio astronomy, and monitoring other developments related to 

the history of radio astronomy (including the deaths of pioneering radio astronomers). A relevant 

activity of this group was the campaign to preserve the Karl Jansky monument at the former Bell 

Laboratories site in Holmdel, New Jersey, which is being sold to a commercial developer. This 

place is where extraterrestrial radio waves were first detected. We expect to work with this group 

over the coming years.13

	 The Jodrell Bank site was included in the UK Tentative List in 2011, and the authors are 

now completing subsequent steps in the process of moving the site to full UNESCO World Heri-

tage Site listing.14 The proposed listing will encompass the entire site and will include many areas 

and structures either now in disuse or that have new uses (for example, as workshops in former 

offices and storage in former lab space). In order to achieve this, the process required the prepa-

ration of a formal conservation management plan (CMP) and the creation of a formal site steering 

group including Historic England and the UK government’s Department for Culture, Media & 

Sport (DCMS).

	 The first version of the CMP is now complete and is being updated with formal versions of 

the many maintenance and repair plans in place at Jodrell Bank. The CMP is also likely to require 

new measures that will recognize the importance of the heritage of the site alongside the ongoing 

research. The CMP will consider the way in which a successful World Heritage Site listing will 

affect the future development of the site, including any construction necessary for the future of 

the science on the site and the current ensemble of structures. It should be noted that continuous 

development of new facilities to conduct scientific research is an overarching feature of Jodrell 

Bank, and we expect this to be incorporated into the statement of outstanding universal value of 

the site required for World Heritage Site inscription. 

	 The initial stages of this process have included constituting a governance group for the site 

as a whole. This group is currently internal to the university but does, for the first time, bring 

together all site users and support functions under a chair from the university’s senior leadership 

team. This group establishes the first internal forum that discusses the state and use of the site as 

a whole, rather than more narrow groups concerned with specific functions or areas of activity. 

Consultation and communication activities have also been increased in parallel with this group, 

both internally and externally. 

	 This phase is new for Jodrell Bank and requires a new communication regime for all those 

concerned with the use and conservation of the site. It has already required that staff, who would 

generally recycle components of equipment from one experiment into another, now consider 

whether equipment would be better conserved, which has both cost and sourcing implications 

and requires discussion with colleagues not usually involved in the decision. The communication 

regime extends beyond the people who work on site to the wider university and to Cheshire East 

Council, English Heritage, and the Department for Culture, Media & Sport and also, of course, 

includes the wider national and international community concerned with radio astronomy re-

search and the heritage of science.
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Balancing the Needs of Heritage  
and Scientific Research
Although these early steps in formalizing a culture of heritage preservation at the site are very 

positive, Jodrell Bank’s custodians face a constant challenge in striking a balance between pre-

serving and curating the site’s heritage and the need to push forward the boundaries of world-

leading radio astronomy research—the site’s raison d’être.

	 In the past, this balance point has been found in an informal way on a case-by-case basis, 

for example, the installation of an entirely new reflecting surface, nested in the original 1950s 

surface, at the beginning of the 1970s. This second surface was itself replaced at the beginning of 

the 2000s. In all such engineering works on the Lovell Telescope, Jodrell Bank staff work closely 

with Historic England in cognizance of the Grade I listing of the telescope.

	 However, the need to establish a more formal framework for future planning was brought to 

the fore in the process of preparing the case for UNESCO World Heritage Site listing; UNESCO 

requires the site’s custodians to express the importance of the site in terms of a number of attri-

butes that encapsulate both the tangible and intangible elements that must be conserved in order 

to preserve important aspects for humanity. In identifying these attributes, the site’s custodians 

were conscious that they must both preserve the remnants of the early science at the site and also 

safeguard the use of the site for astronomical research, recognizing that it has been in constant 

use for world-leading research since the inception of the field of radio astronomy. 

	 Scientists at Jodrell Bank have been developing and testing new equipment and techniques 

since 1945, work that continues to this day. The ongoing and regularly changing nature of sci-

entific research at the site is an intangible element and perhaps hard to conceptualize, but it is 

extremely significant since it gives the site its character, underlying and determining the physical 

structures (such as the Lovell Telescope) that exist and are most apparent. At Jodrell Bank, we 

take the position that enabling this continued activity is as important as preserving and conserv-

ing the site’s material record.

	 At the time of writing, we have identified five attributes for Jodrell Bank, all of which must 

be taken into account:

1.	 Jodrell Bank’s pivotal role in the development of the field of radio astronomy

2.	 the development of the field of radio astronomy in relation to the landscape of the Jodrell 

Bank site

3.	 Jodrell Bank’s unique position as the home of the Lovell Telescope, an internationally iconic 

scientific structure

4.	 ongoing science at the site, which results in new scientific equipment and facilities con-

stantly developing in parallel with the Lovell Telescope and the original control building 

and structures at the site

5.	 innovative public engagement with science, which has captured public imagination and has 

been a key feature of Jodrell Bank’s activities since the Lovell Telescope first began working 

in 1957
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	 As noted above, the Lovell Telescope is a particular case where balance must be care-

fully struck. The telescope is still in constant use, alone and as part of the United Kingdom’s 

e-MERLIN network of radio telescopes, so the requirements of its Grade I listing must be 

constantly balanced against the requirements of the operation of a large scientific instrument, 

with all the maintenance and safety regulations that this entails. One small example of a tension 

that can emerge from this constant balancing occurred in the recent replacement of the eleva-

tors in the two towers supporting the bowl. These elevators are not open to the public and are 

used solely by engineers and scientists at Jodrell Bank during maintenance and for changing 

radio receivers. Clearly, it is important to have safe and reliable elevators, necessitating their 

replacement. However, in discussion with Historic England and local planning officers, it was 

important to retain as many features from the original elevators as possible in order to comply 

with the Grade I listing. For example, an original safety plate, stipulating the restriction on 

weight carried by the elevator in Imperial units (pounds and ounces) had to be replaced with 

an identical plate. However, the use of Imperial units does not comply with current health and 

safety regulations, which require the use of metric units. This meant that an additional plate, 

showing the weight limits in kilograms, also had to be displayed in the elevator. Similarly, 

the original panels of buttons for selecting floor, alarm, etc., were also transferred to the new 

elevators but were fitted on top of the new switching system so that the original appearance 

was retained. Although relatively minor, these items exemplify the extra measures that need 

to be taken to ensure that curation of heritage and the requirements of scientific research are 

balanced across the site.

	 The attributes of the site will be preserved via the implementation of a conservation 

management plan that will encompass not only the tangible heritage of the site (equipment, 

buildings, layout, etc.) but also the intangible heritage—in particular the ongoing science. 

The CMP, for example, includes a gazetteer of structures on the site, as well as detailed cata-

logs of equipment. However, the observatory also has comprehensive maintenance programs 

and records, which will now be categorized, additionally, as conservation practice (as well 

as ongoing engineering practice). Other records and archives of the history and heritage of 

the site will also be included in the CMP, including, for example, the National Jodrell Bank 

Archive (held by the University of Manchester’s John Rylands Library), other archived mate-

rial currently at Jodrell Bank, Pathé news footage, material in the North West Film Archive, 

etc.15 The university is also planning an oral history project and an image collection project, 

both of which were launched in 2015, marking the 70th anniversary of the inception of the  

observatory.

	 The current and former scientists and engineers at Jodrell Bank are very supportive of these 

heritage plans, including recognition of balancing them with the demands of ongoing science. 

The radio astronomy community, at Jodrell Bank and beyond, has a great sense of pride in its 

history, and observatory staff members regard themselves as custodians of its heritage as well as 

contributors to its future.
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Engaging the Public with Radio Astronomy  
and Its Heritage
There has been great media and public interest in Jodrell Bank since it first came to the public’s 

awareness in the early 1950s.16 Largely as a result of the development of the Lovell Telescope (as 

it is now known) and its role in the early space race, there has been considerable demand, which 

persists to this day, from the public for information about its work. Although this interest was 

originally focused on the site’s scientific and engineering achievements, it now also contains an 

element focused solely on the site’s heritage and its role in world events.

	 In the United Kingdom, scientists who receive public funding for their research are re-

quired to ensure that their work delivers “impact” for wider society, as well as pushing the fron-

tiers of knowledge in their field. Impact includes economic and social benefit and, particularly, 

public engagement with science and engagement with school groups.17

	 Although public curiosity about science remains high, the challenge for science engagement 

professionals is to build confidence in engaging with science—particularly cutting-edge research 

of the sort carried out at Jodrell Bank—and reaching a broad demographic. The Public Attitudes 

to Science 2014 report shows that more people do not feel informed about science (55%) than feel 

informed (45%). Breaking this down, young adults feel better informed than the average (51% 

feel informed versus 45% overall). However, more affluent people tend to feel more informed: 

half (51%) of ABC1s feel informed compared to a third (35%) of C2DEs.18 Women are much 

less likely to feel informed than men (34% versus 56%); the same difference exists among young 

women and men aged 16–24.19

	 The report also found that there are no substantive differences in participation in science-

related leisure or cultural activity either by gender or by age (within the adult population). How-

ever, other demographic differences suggest a certain type of person is more likely to take part 

in these sorts of activities, including the more affluent (80% of ABs have undertaken a science-

related activity in the past year compared with 67% on average; among C2DEs, this drops to 

55%). White people are also more likely than those from ethnic minorities to have done a science-

related activity over this period (69% versus 51%). So although in some cases the lack of engage-

ment reflects a lack of interest in the topics themselves, in others it reflects the fact that there are 

barriers to participation, a large number of which are cultural and social.

	 In 2011, the first phase of a new Discovery Centre was built with £3 million funding from 

the North West Development Agency and the European Regional Development Fund. The 

new center was designed to showcase current research and was so popular that an additional 

building was added in 2015. At the time of writing the center has around 160,000 visitors each 

year. Its core aim is to “inspire the scientists of the future” and to this end has a vibrant edu-

cation program, which engages over 22,000 school pupils per year (with an aim to grow this 

to 30,000 over the next two years). The team at the new center have developed several new 

approaches to engaging the public with the research that is carried out at the site and is now 

piloting new ways of engaging the public with the site’s heritage. Key to this outreach is finding 
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new ways to reach audiences that would not naturally gravitate toward either science or science 

heritage engagement. 

	 The area of the site that is accessible to the public (and in which almost all of the public 

engagement is delivered) is distinct from the working area of the observatory, although the Lovell 

Telescope is visible from the Discovery Centre. As the observatory area is where the significant 

(immovable) heritage elements are located, the geography of the site allows the public engage-

ment strand to be managed with minimal impact on either the research or the heritage. However, 

the blend of research and heritage is a key selling point for visitors to the site, and new engage-

ment projects are making increasing use of the site’s heritage and its material culture to attract 

new audiences.

	 Examples of approaches used to attract new audiences to Jodrell Bank include the hosting 

of the Live from Jodrell Bank and bluedot science-music festivals, which feature music as the 

main attraction but also include a science fair staffed by around 100 scientists who engage the 

public with their work. These festivals can attract 12,000 people per day, and demographic anal-

ysis of attendees shows that they are a good way of reaching new audiences.

	 Archive image and film related to the creation of both the observatory and the Lovell Tele-

scope have been projected onto the telescope itself, reaching an event audience of around 6,000 

people, most of whom would not normally engage with astronomy’s heritage. 

	 New galleries are planned in the next three to five years that will provide spaces in which 

the public can engage with the heritage of both the site and the emergence of modern multi-

wavelength astronomy that began with radio astronomy. It is now routine for astronomers to use 

terrestrial and space telescopes that observe across the electromagnetic spectrum, and it seems 

fitting that Jodrell Bank, which is a key location in this modern approach, should provide a hub 

for public engagement in this area. The new galleries, and associated events and education pro-

grams, will transfer the innovative public engagement techniques developed at the site into the 

treatment of this heritage.

Conclusions
The Jodrell Bank Observatory site is moving from an informal conservation regime to a frame-

work that formalizes maintenance and preservation work, linking these to curation and interpre-

tation of the site’s heritage. This process was stimulated by the fiftieth anniversary of the Lovell 

Telescope in 2007, the redevelopment of facilities for public engagement, and the subsequent 

move toward UNESCO World Heritage Site listing. In the future, Jodrell Bank’s scientific pri-

orities will be balanced with heritage priorities, and a growing preservation culture will be built 

within the staff group. The site as a whole will be included in the preparation of a conservation 

management plan, and its heritage will be interpreted in a new exhibition, which will be housed 

in new purpose-built galleries.

	 The heritage approach to Jodrell Bank is in its infancy, and changing the working culture 

of the site has already required much consultation and discussion. However, we have found that 
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working astronomers have a keen interest in their heritage and are embracing ways of preserving 

the historical record while continuing to use and develop world-leading technologies. This bal-

ance of heritage and current research is also finding its way into our public engagement program. 

We hope that this transition will ensure that the heritage of the emergence of radio astronomy 

at Jodrell Bank, effectively the start of modern multiwavelength astrophysics, is protected and 

celebrated alongside its world-leading research for many decades to come.
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CHAPTER 12

Against Method
A Story-Based Approach to Acquiring 
Artifacts from Nobel Laureates

Those are my principles, and if you don’t like 

them . . . well, I have others.

—Groucho Marx

The Nobel Museum in Stockholm opened� to the 

public in 2001. Today, 16 years later, the museum 

holds a fantastic collection spanning all Nobel Prize 

categories, including peace, literature, and eco-

nomics.1 The stories behind each artifact bind the 

collection together. We endeavor to interview each 

donor, and in many cases, the stories we collect are 

even more important than the artifacts themselves. 

But is there or should there be a standard policy or method for collecting artifacts related to 

modern science?

	 Before I try to give my view on this question, let me give a few examples from the process 

of establishing the Nobel Museum in Stockholm, Sweden. In 2000, we were working intensively 

to acquire objects with which to fill the new museum. True to our cultural heritage, we turned to 

a famous Swedish children’s book by Astrid Lindgren, Pippi Longstocking, for inspiration (Fig-

ure 1).2 In one of the book’s episodes the main character, Pippi (who by nature is incredibly 

strong but also kind and fair), comes to an agreement with her two young friends that they should 

devote themselves to collecting interesting objects. What’s more, Pippi even invents a word 

for their newfound endeavor. They shall become sakletare (that is to say, “thing-finder”), she 
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declares. Anything they find lying on the ground is fair game. Their hunt for physical objects 

yields rusty tin cans, bottles, and the like but also takes a somewhat unexpected turn when Pippi 

tries to lay claim to a man whom she finds lying on the grass, sunning himself.

	 The upshot was that the daring nature of Pippi’s artifact hunting became an example for us 

to aspire to. Thus emboldened, we summoned the courage to contact Nobel laureates and their 

relatives as we began what was an artifact hunt of global proportions. 

	 And search far and wide we did! Although we did not set out to acquire a particular type 

of object, we did decide to concentrate on a small group of selected laureates. The collected ar-

tifacts came to play an important role in our storytelling. We wanted to make our stories as rich 

and multifaceted as possible and so gave the involved curators largely free rein to develop “their” 

stories using their own imaginations. As long as the artifacts fit through the doorway, they didn’t 

cause the floor to collapse under their weight, and we had room for them inside the museum 

building, we imposed no other restriction. We also worked to create combinations of artifacts, 

films, photographs and archival materials. Adopting such a broad-minded approach also meant 

that we received a wide array of artifacts. If a plate from the dining hall at Cornell University 

meant something to Richard Feynman (physics, 1965), then we tracked one down.3

	 Naturally, many of the objects we acquired came from the laboratories of Nobel laureates 

working in the sciences. One of the problems we faced was that many objects used by modern 

science are not self-explanatory. On one occasion we visited the European Organization for Nu-

clear Research (CERN), where we were presented with (among other things) a light conductor 

made from acrylic plastic (Figure 2).

1. 
Illustration from Pippi Longstocking. © Astrid Lindgren/Ingrid Vang Nyman/Saltkråkan AB.
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	 When boarding the plane to Stockholm at Geneva Airport, we carried the conductor on 

board with us, and naturally enough, the cabin staff wondered what it was. My predecessor, 

Professor Svante Lindqvist, told them it was a trophy. He claimed we were the National Swed-

ish Mixed Bowling Team and that we had just won the European Championship. The light con-

ductor was our first-prize trophy. This fanciful explanation turned out to have an unexpected 

2. 
Light conductor in acrylic plastic from CERN. Photo by the author.
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consequence: the entire “team” was served champagne and congratulated on our sporting 

achievement!

	 In truth, this is not just a funny story but also well illustrates the problems involved in try-

ing to collect modern scientific artifacts and, thereby, also the kinds of problem we faced when 

trying to collect objects for the Nobel Museum. The story that accompanies an artifact is just as 

important as the artifact itself and must be verifiable to maintain a collection’s high standard.

	 Here is another example to illustrate my point. Russian physicist Pyotr Kapitsa (Figure 3) 

was awarded a Nobel Prize in 1978 for his work in the field of low-temperature physics. Kapitsa 

conducted his prize-winning work at Cambridge in the 1930s. A critical problem at the time, of 

course, was being able to achieve sufficiently low temperatures to conduct these studies. Among 

the apparatuses Kapitsa invented to enable his research was what is known as a helium liquefier. 

Although we were not able to acquire the original apparatus, with the help of Kapitsa’s son we 

were able to make contact with the instrument maker who had worked in his father’s laboratory, 

and he offered to make us a helium liquefier (Figure 4). A related “artifact” that turned out to be 

a very valuable find for us was a film in which Kapitsa demonstrates how his apparatus functions. 

This kind of combination of film, images, and objects was exactly what we were looking for. The 

fact that this particular helium liquefier was newly manufactured was of no consequence at all. 

3. 
Pyotr Kapitsa in his laboratory in Cambridge, around 1930. Emilio Segré Visual Archives, Margrethe Bohr Collection.
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There is a footnote to this story. In the end we were forced to smuggle the instrument out of Rus-

sia to get it home safely to the museum, a fact that makes the tale we tell about Kapitsa richer and 

also says something about the situation in Russia in the late 1990s.

	 Our primary task is to disseminate information about the Nobel Prize and the work of Nobel 

laureates. In our work we strongly emphasize the pedagogical, popular scientific side of the prize. 

Collecting artifacts through which to portray the material culture of scientific fields is not an ex-

plicit part of our mission. In practice, however, it often becomes an unintended consequence of 

long-term projects, for example, in charting the progress of nuclear physics. 

	 Just as important are examples of artifacts that were not especially difficult to comprehend. 

We are often inclined to associate modern science with large, mysterious machines. I suggest, 

however, that the opposite is at least equally true. An object simple in nature is often equally well 

suited to complementing the explanation of a recent scientific achievement. For example, the dis-

covery of Helicobacter pylori (the bacterium that causes gastric ulcers), for which Barry Marshall 

and Robin Warren received the 2005 Nobel Prize in Physiology or Medicine, involved a pivotal 

experiment in which Marshall tested the bacterium’s potency and ability to survive in the stomach 

by drinking a solution with the bacterium. Marshall fell seriously ill and developed gastric ulcers 

4. 
Part from Pyotr Kapitsa’s helium liquefier. Photo by Gabriel Hildebrand, Nobel 
Museum.
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as a result. The bacteria were able to multiply, thereby proving that H. pylori is able to survive 

the harsh environment inside the human stomach. The Nobel Museum was later donated the 

beaker from which Marshall drank the bacterial culture. It is a fantastic artifact that contributes 

enormously to our telling of the story of Marshall’s discovery and his Nobel Prize. Although the 

beaker itself may seem a very simple object, it is, nonetheless, an indispensable tool in almost 

every laboratory in the world and is a very fitting artifact to add to our collection. Barry Marshall’s 

discovery has also been retold as a comic book, which, naturally, we have also added to our col-

lection. In addition, we have also included a necktie decorated with a H. pylori bacterium motif, 

which Marshall wore to a reception held in connection with the 2005 Nobel festivities (Figure 5).

	 A similar example is that of laureate Osamu Shimomura, who was awarded the 2008 Nobel 

Prize in Chemistry for the discovery and development of green fluorescent protein (GFP), to-

gether with two American scientists: Martin Chalfie of Columbia University and Roger Tsien of 

the University of California, San Diego. Today, GFP is widely used for many different types of 

applications. Proteins are marked by adding the fluorescent protein to the original DNA chain, 

thereby creating a simple method for tracing different proteins in the body.

5. 
Artifacts from Barry Marshall: glass jars, comic book, tie. Photo by Gabriel Hildebrand, Nobel Museum.
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	 The protein was discovered and later harvested by collecting thousands of luminous jellyfish 

from which it was extracted. Shimomura involved his whole family and even friends and acquain-

tances in his harvesting work. New tools were required to permit harvesting GFP effectively. 

Shimomura constructed nets to catch the jellyfish and a special cutting machine with which he 

could cut off their edges, where the protein was located. The separation process itself required 

little more than off-the-shelf technology to perform. What was special about it was Shimomura’s 

dogged determination to harvest the jellyfish and isolate the protein chain responsible for their 

luminous quality. Although the work required only simple tools, they proved to be crucial to his 

success.

	 Shimomura personally picked out items to donate to the Nobel Museum that he feels best 

illustrate his work. These include plastic jugs and rudimentary nets that his family members and 

colleagues used in their hunt for the jellyfish 

(Figure 6). Shimomura provided his own in-

depth explanation of his work in the Nobel 

Lecture he gave during the 2008 Nobel Week. 

In the introduction to his lecture, Shimomura 

held up a test tube filled with the GFP ex-

tracted from 20,000 jellyfish (Figure 7). This 

test tube and its contents now form part of the 

Nobel Museum’s collection. Once again, the 

combination of artifact and story proved to be 

a winning formula. 

	 Finally, there is an experiment replica 

from the time of radioactivity’s infancy. In 

choosing this particular example, I acknowl-

edge that I may digress somewhat from what 

is genuinely “modern science,” but I feel pas-

sionate about this replica of the Curies’ lab-

oratory, which we displayed to the public in 

2012. And I do believe that passion is a very 

important criterion when selecting what to 

present and what to omit.

	 In discovering the elements radium 

and polonium, Pierre and Marie Curie (Nobel 

Prize in Physics, 1903; Marie Curie received 

6. 
Net for catching jellyfish, made by Osamu Shimomura and 
his family. Photo by Gabriel Hildebrand, Nobel Museum.
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a second Nobel Prize, for chemistry, in 1911) used a set of equipment consisting of an electrom-

eter, an ionization chamber, a piezoelectric balance, and a stopwatch. They were attempting to 

discover a way to measure the strength of the radioactivity emitted by different elements. There 

were no Geiger counters at that time, so the pair was forced to find an indirect way to measure 

radiation.

	 Previously, Pierre had worked on developing a new type of electrometer, a quadrant elec-

trometer, capable of measuring low voltages with extreme precision. The pair had come to un-

derstand that radioactivity affected the conductivity of air in approximately the same way salt in 

a saline solution does when two metals are present (i.e., the ions migrate). They constructed an 

ionization chamber, inside which radioactive compounds were positioned between two plates. 

This setup allowed them to confirm that a weak charge was generated between the plates in the 

ionization chamber when a radioactive substance was present. They still had difficulty measur-

ing the magnitude of the radiation. The trick proved to be supplementing the equipment with 

a piezoelectric balance, which emitted a voltage directly proportionate to the pressure its plate 

was exposed to. By connecting the piezoelectric balance to the electrometer, the charges from the 

balance and the chamber soon canceled one another out. The pressure created by a weight was 

then removed from the balance’s plate, and the Curies measured the time it took for the charge 

generated inside the chamber to cause the electrometer’s needle to return to its original position. 

Thus, time became a relative gauge of the strength of the radiation emitted (Figure 8).

	 We recreated this very elegant experiment at the Nobel Museum under the supervision 

of the brilliant technician and amateur historian Bernard Pigelet. Our experiment deviated 

7. 
Osamu Shimomura displaying a test tube with GFP protein made from 20,000 jellyfish during his Nobel Lecture in Decem-
ber 2008, Nobel Media, image from film, Shimomura’ s Nobel Lecture, December 8, 2008.
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somewhat from the original. We used a laser beam to channel light toward the mirror attached 

to the electrometer. In all likelihood, Marie Curie used a carbon filament lamp and a lens. The 

batteries used to generate the basic voltage in the ionization chamber and electrometer were also 

of a different type than the lead accumulator used by Curie. Nevertheless, the instruments are, 

in principle, the same as Curie’s, and the original instruments were also on display in the same 

room. With the help of an installation constructed using fully functional replicas, we were able to 

explain effectively a concept that is highly abstract (Figure 9).4

	 Now to my conclusions.5 In Sweden there has long existed an organization that supports 

contemporary studies and collecting by museums. It is best known by its acronym, SAMDOK, 

short for samtidsdokumentation (“contemporary documentation”); SAMDOK’s international 

equivalent is the International Committee for Collecting, which is one of many committees 

under the International Council of Museums.

	 For many years, SAMDOK has done excellent work in organizing and promoting the active 

collection of contemporary materials, but as a researcher I have often reacted negatively to its 

tendency to want to establish a common policy or standard for collecting contemporary materials. 

This focus began with the shift to computerized records and was in the form of standard forms 

that required filling in specific well-defined fields. Conferences were held on what should be 

8. 
Pierre and Marie Curie working with the experiment they constructed in order to measure radioactivity. Marie Curie is 
removing a weight from a piezoelectric balance and is controlling a stop watch with her left hand. Image courtesy Musée 
Curie (coll. ACJC–Archives Curie et Joliot-Curie), Paris.
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collected. As I listened to these discussions, I always had a strong sense that, in fact, they were 

more focused on deciding what not to collect. In my opinion, this is a dangerous path to take. In 

truth, we can know nothing of the future. What future museologists, researchers, and the general 

public will want to know about our time is not something we can or should decide. The day we 

establish standardized rules for what and how we should document our era is the day we plot a 

dangerous course, the day when our collections will begin to tell the story of our rules rather than 

anything of use or substance. 

	 I do not mean to suggest that collecting should be mindless. On the contrary, freedom al-

ways demands responsibility, and no matter which path we choose, it will become meaningful 

only once we attempt to explain it. Provenance has always been an important concept when 

speaking about artifacts. But such descriptions reveal nothing about the collector’s motives for 

including the particular piece in a collection. No motive is too banal. Did the collector simply 

think it beautiful? Had it just become too old and worn to be used any longer and so was removed 

from service and donated to a museum collection? This is the only occasion on which I advocate 

the application of a rule or principle. Yes, in fact, the only principle that not even Groucho Marx 

9. 
Ionization chamber used by Marie and Pierre Curie. Photo by Gabriel Hildebrand, Nobel Museum.
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can move me to relinquish: Explain! Tell us why you felt that this particular object was worth sav-

ing. Otherwise, I hope to see every kind of collection imaginable composed for reasons of which 

we cannot even conceive.

	 No, in this context I am convinced that methods, rules, and regulations are obstacles. Each 

example of the ways in which different institutions tackle this problem is inspirational and exciting 

to hear about. However, for the sake of posterity, I would encourage us all simply to let a thousand 

blossoms bloom and to let the width of the doorway, the beauty of the color, or even the weight 

limit of the floor of your institution determine what is collected, as much as what we find interest-

ing and fascinating at present. Contemporary motives are certainly interesting and will undoubt-

edly remain of interest to those who use our collections in the future. Documentation of every 

kind is invaluable in further heightening the value of modern science’s material relics. Interviews, 

photographs, film, archival material, and suchlike are keys that help us understand a technique or 

manufacturing process. That said, do not allow a serious approach to stifle creativity or the desire 

to collect whatever strikes you or fits in with your own idea. Remember that archaeologists study-

ing ancient civilizations often make their most fascinating discoveries in rubbish heaps.

	 Naturally, one might ask just how appropriate such a liberal approach to collecting is for 

modern science. Or could it perhaps be applied in all contexts? Technological development pro-

vides a good answer. Thanks to modern methods of analysis, objects that were previously consid-

ered to be of little value have taken on a completely new status in many collections. Our methods 

of reading historical objects are continually changing and developing, which reminds us of the 

importance of collecting less obviously interesting artifacts. Breadth, randomness, and variation 

are important, regardless of whether we are discussing older collections about science history 

or current collections of modern objects. The “epistemological anarchy” that Paul Feyerabend 

wrote about is well suited to our work of collecting artifacts, whether they be materials relating 

to Curie or to Shimomura. The same applies to the differences between the collections of large 

institutions and smaller collections (like the Nobel Museum, which I represent). 

	 Another aspect worth considering is the unique situation of the Nobel Museum. This mu-

seum tells the stories of less than a thousand of the world’s most talented people (in 2017 there 

were 911 Nobel laureates). It is a museum that celebrates excellence and where, in each case, 

failures and remarkable sidetracks are followed by success. A clear example of how we view 

ourselves is when, a few years ago, our marketing department printed T-shirts for our staff who 

were participating in a footrace. The shirts had the text “The Nobel Museum — We Only Have 

Winners” (athletically, however, we placed in the middle of the field).

	 I do not believe that the Nobel Museum, with the natural delimitations imposed by the sub-

ject areas and themes that can be tied to the Nobel Prize, Nobel laureates, and Alfred Nobel, is 

uniquely suitable for an open and tolerant collection policy. The stories we convey include people 

who have succeeded and failed, been praised and persecuted. Additionally, all the prize-winning 

research has not escaped reevaluation once the consequences of its application have been fully 

understood. Good examples of this include lobotomy, for which António Egas Moniz received 
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the 1949 medicine prize, and DDT, for which Paul Hermann Müller received the 1948 medicine 

prize. I would argue that having an open approach to what should be collected is applicable to all 

types of institutions, whether large or small and whether they collect success stories or present 

disaster scenarios. 

	 Is our proximity to the individuals whose stories we are supposed to tell a problem? Yes, 

there is definitely a risk that we may overemphasize objects that tell the winner’s stories. This 

issue is something we need to be very aware of. The fact that the laureates themselves often 

choose what they want to give to the museum and, additionally, tell us why they chose to donate 

just those objects means that we have a group of objects marked by vested interests. It is up to 

our docents to provide nuance to the picture and our curators to find objects that add perspective 

to the stories we tell, or indicate clearly that this is a particular Nobel laureate’s version of what 

happened. In all honesty, we have yet to begin gathering the stories of the assistants and compet-

itors, which are just as interesting.

	 Digital technology has provided us with completely new opportunities to work with our col-

lections of artifacts. If collections are well organized and can be easily searched, then we can use 

them in many different ways, such as creating new and fascinating exhibitions in which artifacts 

can be brought together into new and unexpected combinations. These unique combinations 

can help us better understand a technique, a scientific culture, a creative work environment, or 

whatever it might be. In today’s digital world we are also increasingly less restricted to our own 

collections. The current level of international collaboration between institutions is hardly likely 

to decrease. It will continue to grow and allow us to embrace a tremendously exciting future 

to which our collections will contribute enormous amounts of surprising information. For their 

users—whether exhibition visitors or researchers—the boundaries between different artifacts 

owned by different institutions will dissolve as an increasing amount of our material history be-

comes accessible via readily searchable digital media. This, too, speaks in favor of a policy-free 

approach to collecting.

	 The examples I have provided of how the Nobel Museum collects artifacts are most definitely 

not intended as a recommendation to others. No, I would advise against it. Instead, I encourage 

you to find your own creative approach. Our method works for us. In fact, I am passionate about 

our approach. Through our unmethodical method, in which the slightly anarchistic Pippi Long-

stocking serves as our role model, I am convinced that we, being good sakletare (“thing-finders”), 

will acquire a host of interesting artifacts both for our own use in future research and exhibition 

activities and for use by you.

Notes
The title of this chapter is borrowed from Paul Feyerabend’s 1975 book Against Method. I do not claim to follow Feyerabend or 
otherwise subscribe to his philosophy, but his book has become iconic and the concept he introduced, epistemological anarchism, 
may prove useful in this context.

  1.	 Our collections include artifacts, archival material, photographs, film footage, oral history, etc. In this text I will focus on the 
artifacts even though I believe the approach I describe is just as applicable to any other kind of collection, including those just 
mentioned.
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  2.	 Astrid Lindgren, Pippi Långstrump (Stockholm: Rabén & Sjögren, 1945); translated as Pippi Longstocking (New York: Viking, 
1950).

  3.	 The theme for our first exhibition was creativity and was entitled Cultures of Creativity. The selected laureates were intended to 
exemplify different categories of creativity and also to highlight the dichotomy between individual creativity and creative envi-
ronments. Roughly 50 individual laureates and a dozen environments from all parts of the world were included.

  4.	 The things we collect are not always placed on display and are not always creative. Whenever we bring something into our 
collection, a motivation or, rather, an explanation is written. Artifacts collected this way could very well be part of future, not 
yet envisaged projects, whether exhibitions or research projects. A consequence of having no policy for what we bring into our 
collections is that replicas are treated, in many respects, as originals and kept for posterity. 

  5.	 In relation to this matter, I take the opportunity to thank Matts Ramberg, head of the Collections Department at Sweden’s 
Museum of Technology, who at a Society for the History of Technology conference held in Uppsala in 1992 argued that artifact 
collection should be as free and unrestricted as possible. His words made an impression on me, and I have found no reason to 
reevaluate the somewhat anarchistic approach for which he argued that day and which I quickly adopted as my own.
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CHAPTER 13

Hands-on Science Centers  
as Anticollections? 
The Origins and Implications of the 
Exploratorium Exhibits Model

In May 1969, “without so much� as an announce-

ment” to the public, the Exploratorium in San 

Francisco welcomed its first visitors: a pair of jog-

gers who had wandered into the building by mis-

take during a marina-side run. These impromptu 

visitors “never slowed up,” director Frank Oppen-

heimer noted, “they just went back and forth, and 

finally went through the curling path [from one ex-

hibit to another] and out the door again.” A relative 

stranger to the Bay area, Oppenheimer—a physi-

cist and the brother of J. Robert Oppenheimer—

envisioned the Palace of Fine Arts site on which his 

new museum sat as emblematic. The new institution, a New York Times reporter wrote, was a 

proper museum, connected to the long tradition of exhibition and public outreach, but it was also 

a novelty: “it was the first museum in the country to get the Unites States Department of Health, 

Education, and Welfare to recognize museums as educational institutions.”1 For the first exhibits 

Oppenheimer quite publically copped what might be described as an anticuratorial, or at the very 

least anticollections, attitude: he scrounged old, discarded physics lab equipment from Stanford 

and worked with designers to reassemble them into what he envisioned as a raw “woods of natu-

ral phenomena,” to be explored in any order and at visitors’ own pace.2 San Francisco Chronicle 

science writer David Perlman later expressed some skepticism about such an open-minded—and 
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open-ended—approach: “I thought he was pretty far out. He talked about things I had never 

thought about in the context of a museum. I thought: This is never going to fly at all.”3 

	 In retrospect, the Exploratorium model had an enormous impact on both the nation’s mu-

seum and science education communities. The Exploratorium’s twinned values of informal learn-

ing and hands-on experience became the foundation on which many science and natural history 

museums have developed new relationships between content, pedagogy, and the objects on dis-

play within their walls. Institutions as far flung as children’s museums and art museums all even-

tually adopted rhetoric and exhibition techniques that the Exploratorium pioneered.4 

	 At the same time, the new antiestablishment museum embodied the ideological contradic-

tions and practical problems of its leader’s unique approach. Although the populist pedagogy 

of “no one flunks a museum” offered an enticing alternative to more traditional educational 

and display polemics, it did not, by itself, solidify the idealistic and almost naïve institutional 

consensus about science, museums, displays, and collecting to which it aspired. Although Op-

penheimer’s Exploratorium embodied a critique of existing formal school science education, 

it did not eschew existing modes of object-based learning. Finally, it sidestepped questions of 

where science and museum-based science education should fit into the Cold War’s politically 

electrified culture.5 

	 Historical understanding of these origins, in turn, might prove instructive for contemporary 

science museum collectors as they seek to understand and address contemporary public misun-

derstandings among visitors about both science education and the museum experience.6 Neither 

object-centered nor collections-averse approaches by themselves can resolve these misunder-

standings. The history of the Exploratorium, as explored through the vision of its director and the 

experiences of its exhibits staff with one specific exhibit, I argue, can provide some new starting 

points from which museums might begin to envision challenging collections: more specifically, 

by widening their conceptualization of the history of museum-based education and artifacts, they 

can consider hands-on exhibits (and the often invisible, behind-the-scenes work that went into 

them) more systematically in framing their own exhibits-driven, rather than curator research-

driven, acquisition policies.7

Oppenheimer’s Museum Synthesis: 
Object-Based, Antiexpert Pedagogy
Admirers have often suggested that Oppenheimer’s methods were original and a product of his 

unique genius, but midcentury trends in science education and museum exhibit reform also 

strongly shaped his approach.8 In the broadest historical context, his Exploratorium vision was 

a long-awaited realization of idealistic desires—voiced first by the Progressive museum edu-

cators who advocated visitor participation and, later on, by those biology teachers in the early 

1950s who promoted science in action—to bridge divides between formal and informal learn-

ing.9 Ultimately, Frank Oppenheimer’s path to museums was circuitous, to say the least, but was 
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undoubtedly the product of his own personal and professional encounters with both progressive 

education and Cold War politics.

	 Frank initially turned to science at the urging of his more famous older sibling, Robert, who 

later admitted that his younger brother had a superior talent for “getting his hands dirty in the 

laboratory,” but he left unwillingly as a result of purely political machinations.10 After attending 

the Ethical Culture Fieldston School and obtaining a Ph.D. in experimental physics from the 

California Institute of Technology (Caltech), Frank took a basic research position at Stanford. 

Throughout World War II, the wiry young physicist worked with his brother on the Manhattan 

Project, and in 1947, he took his first regular academic appointment in physics at the University 

of Minnesota. But in 1949, three months from being awarded tenure, he was forced to resign 

from Minnesota under harassment from the FBI for his involvement with Berkeley’s Youth 

Communist Party. Deeply disillusioned and unable to find work as a physicist, he left research 

science entirely.11 

	 By 1959, with McCarthyism on the wane and attention to science education on the rise, 

Oppenheimer returned to higher education and took an appointment in the physics department 

at the University of Colorado, where pedagogical work allowed him (most easily, after years ab-

sent) to return to hands-on science. Specifically, he revamped the university’s physics laboratory 

curriculum according to the most basic scientific and experimental principles in order to, he 

explained, give students “a sense of power to actually do something” in science and in life.12 

At the center of the new plan was what he called a “library of experiments”: around 100 classic 

physics experimental models he used to teach physics first principles with hands-on, student-

paced methods.13 In 1958, he was invited to participate in a national curriculum reform project, 

the Physics Science Study Committee (PSCC), which aimed, in the words of one participant,” to 

revise high school physics curricula according to the same ideas.”14 

	 Oppenheimer’s desire to expand the reach of his successful object-based methods beyond 

the classroom came directly from his experience of the Cold War politics of science. “There is 

an increasing need to develop public understanding of science and technology . . . to bridge the 

gap between the experts and the layman,” he declared, so that laymen could evaluate scientific 

arguments on their own merits.15 But by the mid-1960s, he had become convinced that museums, 

even more than schools, offered the only place where a depoliticized version of this mutual edu-

cational engagement could occur. In 1965 Oppenheimer applied for and received a Guggenheim 

Fellowship;16 although the fellowship was officially intended to fund the study of the history of 

physics at University College London, Oppenheimer instead took the year to explore various 

European science museums.17

	 From the beginning, Oppenheimer argued that museums might transform science educa-

tion, not by eschewing objects and collections but rather by refiguring them—as earlier nature 

educators had—in the active service of student-centered learning. He believed, in the words of 

his PSCC colleagues Jerome Bruner and Jerrold Zacharias, that “the intellectual work of a re-

search scientist and an elementary school pupil are essentially identical.”18 
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	 Museums, he wrote, should therefore not display precious artifacts or peddle prepackaged 

scientific expertise; rather, they should allow visitors to “become familiar with science and tech-

nology and gain understanding by controlling its props,” for “explaining science and technology 

without props can resemble an attempt to tell what it is like to swim without ever letting a person 

near the water.”19 

Challenges and Successes of the 
Exploratorium Model: Less Executive 
Driven, More Unity of Nature
The collection and exhibit-making challenges of this approach became immediately obvious. 

Moving beyond earlier pedagogical philosophies of science museums—where mere exposure to 

cutting-edge scientific knowledge, through spectacle or button pushing, often counted as an im-

portant and effective visitor experience—Oppenheimer insisted that the Exploratorium’s displays 

embody a less “executive driven” style of science education. Nevertheless, he also strove to have 

visitors leave the Exploratorium with some “sense of the connectedness” of nature because (he 

would later argue) “one of the major accomplishments of science has been to demonstrate that 

there is a unity to the diversity of nature.” He analogized the ideal science museum to a symphony, 

to which listeners (visitors) may not be able to explain and replicate the exact structure of the music 

but by experiencing it they know it exists and that is what gives them pleasure as well as comfort.20

	 The Exploratorium’s initial organization and content reflected and carefully managed the 

tension between two core values, free-choice learning and unity-of-nature-driven pedagogy, and 

it involved objects but not artifacts. One of Oppenheimer’s only rules for the new museum was 

that it should avoid “any reliance on the types of diorama displays,” not because they contained 

objects but because they were too expensive and too static.21 Instead, Exploratorium exhibits 

were to be works in progress, themselves experiments (at once in education and display) done 

with objects intended to be touched, broken, fixed, and improved by the fixing. The institution 

foregrounded this value by placing its so-called exhibits “shop” at the museum’s entrance to con-

vey, Oppenheimer wrote, a “sense of honesty . . . like restaurants that let customers see inside the 

kitchen — and with a sign that read: ‘Here is Being Created the Exploratorium, a Community 

Museum Dedicated to Awareness.’”22

	 The Exploratorium’s first few exhibits, which explored visual perception, were a succinct 

embodiment of Oppenheimer’s vision.23 He sought, in the words of philosopher and former Ex-

ploratorium employee Hilde Hein, to “teach the public (or rather…induce museum visitors to 

discover for themselves) how visual perception takes place and how it is modified by experi-

ence.”24 Thus, he included exhibits that “plunged visitors into a disorienting visual environment” 

by means of visual effects produced by visitors putting on glasses that reversed left and right 

or looking through binoculars with two different images (which causes eye-brain confusion, 
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vacillating between alternative interpretations of the signal or, if this cannot be accomplished, 

nausea) or viewing themselves through unusual lighting effects that encouraged the juxtaposition 

of multiple perspectives. 

	 Just as the Exploratorium’s exhibits departed from existing museum taxonomies of knowl-

edge and hierarchies of expertise, so, too, did its educational programs dispense with traditional 

practices. Rather than providing docent-led tours, supplying miniature exhibits to schools, or set-

ting aside a gallery to display student science projects, the museum instituted a Student Science 

Project Program. This program opened up the exhibits building shop to high school students 

working on projects for science fairs and encouraged them to work alongside the museum’s own 

exhibit development teams. The museum also hired interested students to be “explainers,” of-

fering them training and a combination of academic credit and an hourly wage. Explainers also 

built and repaired exhibits, using the manual and mechanical skills that Oppenheimer believed 

so crucial to scientific discovery.25 

	 Coinciding with other visual experiences of the late 1960s, from drug-induced psychedelic 

hallucinations to pop art, the Exploratorium’s thematic focus on the science of perception was un-

derstandably popular with visitors. By emphasizing the visitor’s interaction process, rather than 

standardized school curriculum or curator-created content, the museum’s approach resonated 

with other countercultural trends of the late 1960s and early 1970s, among them, the celebra-

tion of individual choice and the challenge to spoon-fed knowledge (Figure 1 shows the floor in 

1. 
The Exploratorium’s “open” floor, around 1975. © Exploratorium.
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the 1970s).26 Yet the Exploratorium also promised—and delivered—to scientists and educational 

policy makers a shared experience of something that was in many ways quite traditional and con-

servative: learning about well-established scientific ideas, methods, and first principles through 

object manipulation. 

	 Notably, Oppenheimer insisted that visitors interact with exhibits and draw their own con-

clusions from what they encountered on the museum’s floor, so he refused to provide the kind 

of obvious, even pedantic, narrative explanations that twentieth-century Americans had come to 

expect from more established museums’ artifact-based displays. Oppenheimer contended that 

such lack of explanation led to closer observation. This, in turn, led to fascination, which, in turn, 

led to a more profound kind of commitment to learning. “If we do not tell people what they are 

supposed to find, many will leave with a sense of frustration, but a few will have become addicted 

to finding more than anybody knew was there,” Oppenheimer reflected in 1976. This approach 

worked brilliantly for some visitors, but others, uncertain of what to make of the displays, found 

the museum’s exhibits maddeningly opaque. But Oppenheimer refused to accommodate those 

who preferred their science predigested. “How many frustrated people is one addict worth? 

Since there is no going back if one gives away too much, we tend to lean toward [one] . . . answer 

to this arguable question,” he explained. “And we do have a large number of addicts who come 

back for more.”27 

	 Oppenheimer’s decision to cater to the hands-on museum “addicts” may have shocked 

some more conservative educators and museum professionals, but the Exploratorium’s successes 

spawned imitation on a larger scale. In the decade between 1968 and 1978, the United States 

experienced what museum policy-maker Lee Kimche described as science museums’ “greatest 

growth in ten years,” as measured by the number of new institutions and the expansion of existing 

facilities. To mark their departure from traditional museum practices, many of these organiza-

tions came to adopt the moniker Dixy Lee Ray had coined in the late 1950s: “science center.” 

Between 1973 and 1975, visits to science centers more than doubled, rising from 14.4 million 

visits per year to 36.5 million.28 “There is no sign,” Kimche observed, “that the trend will slow 

down soon.” Kimche was hopeful that science centers’ influence would ripple into schools, sug-

gesting that teaching science through hands-on exploration might be “adapted to enhance more 

conventional methods of teaching.”

Hands-on (Life) Science:  
(Re)modeling Exhibit Experimentation
Despite this success, the Exploratorium staff ’s subsequent efforts to expand their own style of 

displays in house, specifically, by displaying live animals and plants and having visitors interact 

with them, began to reveal the practical and political challenges of the Exploratorium’s exhibits 

model. Although the new life science displays at the Exploratorium were hailed among some 

science educators as a “tour de force of exhibit construction,” the labor-intensive logistics of 
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maintaining living artifacts and the inability to control visitors’ interactions with and interpre-

tations of them suggested that there were limits to the kind object-centered, open-ended peda-

gogy that Oppenheimer so passionately advocated.29 Exploring these limits, as revealed in one 

particular archival case study of an exhibit, suggests why Exploratorium-style displays became 

influential models even while they did not become the panacea of Cold War science literacy that 

Oppenheimer had envisioned. Although hands-on exhibits are relatively common in science cen-

ters and atypical of science and technology museums, this example is illustrative of the new types 

of artifacts that I argue museums should consider collecting.

	 Shortly after the Exploratorium obtained its second National Science Foundation (NSF) 

grant, Oppenheimer hired Evelyn Shaw as the first curator of life science and charged her with 

developing hands-on biology displays. Shaw had extensive experience with live animals in muse-

ums: she worked in Gladwyn Kingsley Noble’s old department (now renamed Animal Behavior) 

at the American Museum of Natural History. Oppenheimer offered her a chance to continue 

her scientific work (on marine animal biology) and to publicize her methods and results through 

exhibits in the Exploratorium.30 In 1972, Shaw also hired a young Berkeley alumnus, Charlie 

Carlson, to assist her. Carlson was, temperamentally, a perfect fit: he was comfortable with inter-

disciplinarity, experimentation, and idealism—he had double majored in zoology and commu-

nications and embraced the creative culture of 1960s Berkeley—but he was also committed to 

making scientific concepts meaningful.31 

	 Throughout the next several years, Shaw and Carlson together created a series of innovative 

interactive displays themed around animal behavior. Unlike earlier live animal displays in natural 

history and science museums, Shaw and Carlson’s exhibits demanded more of visitors than just 

observing (under glass or in a distancing enclosure) or animal petting (as with popular live animal 

demonstrations in zoos and science museums); instead, following the Exploratorium’s hands-on 

learning philosophy, they put the visitor in the role of an experimental scientist. In this way, Shaw 

and Carlson relocated a large measure of control of the animal-human interaction away from the 

exhibit designer or the educational demonstrator to the visitor.32 

	 Perhaps the exhibit best illustrating Shaw and Carlson’s approach was the Watchful Grass-

hopper, which featured a live grasshopper under a dome with wire electrodes inserted into its 

ventral nerve cord (Figure 2 shows an illustration from the Exploratorium Cookbook). This pro-

cedure, explained the signage, did not make the grasshopper uncomfortable and allowed visitors 

to explore the grasshopper’s visual field, in order to determine what triggered impulses in the 

insect. The electrodes were hooked up to measuring devices that were also a part of the display: 

an oscilloscope, which recorded extracellular signals in the grasshopper’s brain, and amplifying 

speakers, which allowed visitors to hear, not merely see, the oscilloscope’s active “clicks.” Shaw 

and Carlson imagined that when visitors moved in front of the animal’s visual field, they could 

watch and hear the neural effects of the grasshopper watching them.

	 The relative sophistication of the grasshopper exhibit setup, combined with the fact that 

it featured a live animal, presented significant challenges for its creation and maintenance. 
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Although Carlson and Shaw settled quickly on Schistocerca nitens as the insect that would most 

clearly illustrate the relationship between neurological stimuli and animal behavior for visitors, 

S. nitens’s status as an agricultural pest in California meant that the insects were nearly impossi-

ble to acquire through commercial venues. This challenge forced staff members into temporary 

careers in grasshopper husbandry, breeding whatever grasshoppers would be used in the display. 

Exhibit builders promptly incorporated their newly acquired knowledge of grasshopper hus-

bandry and anatomy into the exhibit. Carlson created a supplementary display explaining the 

grasshoppers’ life cycle, featuring the museum’s grasshopper colony and the exhibit designers’ 

scientific knowledge of behavior and husbandry.33

	 Ironically, given Oppenheimer’s dislike for putting expertise on display, the grasshopper 

exhibit also required museum staff to master the frustrating field of grasshopper surgery. Carlson 

read what he could on S. nitens, conducting his own intensive observations and experiments 

to learn how to insert electrodes into their ventral nerve cords, and then he taught his exhibit 

2. 
A line drawing the Exploratorium’s Watchful Grasshopper exhibit, taken from Exploratorium Cookbook II (1983). 
© Exploratorium.
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support staff to do the same. This required considerable practice and skill. Grasshoppers were 

immobilized with dental wax—if they moved too much, they were anesthetized through 10 min-

utes of refrigeration—then placed under a dissecting microscope, and the electrode was im-

planted and tested. Finally, the preparator used a mixture of beeswax and rosin to cement the 

electrodes inside the animals. “If this preparation is carefully made without too much trauma 

to the animal,” Carlson wrote, “it will last one week or more, up to a month, without noticeably 

affecting the behavior or health of the animal,” a period of time already overextended staff mem-

bers must have found short.34 Graphics that accompanied the Watchful Grasshopper went to 

great pains to illustrate the delicate electrode implantation procedure, also emphasizing that it 

didn’t hurt or permanently injure the insects.35 

	 However, although popular with scientists, these displays did not draw the same response 

from the public: according to an in-house study, only approximately 5% of the Exploratorium’s 

560,000 annual visitors interacted with the living animal displays.36 Furthermore, visitors drew 

conclusions about science and animal behavior from the museum’s exhibits, but these conclu-

sions were problematic: they didn’t always echo those drawn by the Exploratorium’s own staff 

and the broader scientific community. In 1981, for example, a local teacher (M. Clausen) lauded 

the Exploratorium as a “wonderful place for making people become aware of and excited by sci-

ence” but noted that she found the Watchful Grasshopper downright disturbing. “Whatever the 

instructional value of such an exhibit it represents cruelty to animals and only encourages people 

to treat animals as playthings without feeling,” she wrote to Oppenheimer. “I sincerely hope you 

will remove that torture chamber. I did not go through the animal behavior section after seeing 

the grasshopper in fear of seeing more of such disturbing sights.”37 Perhaps the museum could 

show a short animated film with sound to illustrate this phenomenon instead, she suggested. 

	 Another visitor, Leelane Hines, also noted his discomfort with the exhibit, describing it 

as “counterproductive” and noting that “what we learn is not always what people think they 

are teaching.” Rather than conveying information about animal behavior and neurological path-

ways, Hines argued, the exhibit propagated a reprehensible lesson: “when creatures are less 

than human, we, as superior more knowledgeable beings, need not treat them with respect 

or kindness. Lesser beings may freely be used for our own (scientific) (genetics) (self-defense) 

purposes.”38 

	 Oppenheimer himself sought to assuage these concerns, by explaining both the scientific 

methods and motivations behind Shaw and Carlson’s life science displays, especially to a number 

of visitors who championed animal rights. In 1981, for example, he attempted to reassure an angry 

Henrietta Gennrich that the grasshoppers in the exhibit weren’t receiving visitor-administered 

electrical shocks. “The live grasshopper that you saw was not hooked up to a shock stimulator!” 

he protested. “Fine, flexible wires were connected to the back of the grasshopper who lives very 

happily and can move around,” but measurement was very different than torture, he explained. 

Still, he agreed, the exhibit could probably use some clarification. Going forward, he promised, 

“we will do everything we can to make it clear that we are showing that animals, as well as people, 
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transmit information by generating their own electricity and that this process is going on all the 

time in all of us.”39 

	 That said, because Oppenheimer sought to “show, not tell” about science and he had been 

burned by the politicization of science, the Exploratorium actively disavowed exhibits whose 

lessons could be easily applied to social issues. This curatorial mandate, although understand-

able given his Progressive educational philosophy and his personal experiences, ran counter to 

his institution’s populist commitment to start from visitors’ own questions and experiences. It 

also worked against the efforts of other more establishment museums to develop what Erminia 

Pedretti has called “critical exhibitions” that speak to the process and nature of science in socio-

cultural context.40 Because Oppenheimer believed that the educational mission of his reformed 

museum “was not to give people the right answers . . . but to help them gain the confidence to 

make discoveries for themselves,” he resisted staff and visitor calls to develop exhibits promoting 

environmental or popular cultural interests.41 “We have to develop new tools to persuade people 

to act sensibly,” he told a reporter in 1979, and “we don’t have to rely on coercion. That is the 

meaning of a free society.” Scientists, who believed their work to be largely apolitical, admired 

this stance, but museum publics—visitors and science educators—saw it as either naive or mis-

guided. Science was necessarily political, some seemed to argue, and as such, science education 

should place scientific developments and discoveries in the broadest possible social and cultural 

context.42 Other cultural commentators outside of the museum community disagreed. The Ex-

ploratorium was right to maintain a careful innocence, Lexington, Kentucky, reporter Walter 

Sullivan editorialized, for it was only this way it could demonstrate a “clean” message: “in science, 

there is also beauty and joy.”43 

	 More specifically, those visitors committed to animal rights were unconvinced by Oppen-

heimer’s reasoning and not easily converted to his almost naive proscience perspective. In the 

case of the Watchful Grasshopper the comparison between animals and humans generated ethical 

controversy that actively disrupted the museum’s pedagogical mission and methods. Visitor Mu-

haima Startt made this point explicit: she insisted that the Exploratorium would never conduct 

a similar experiment on a human being and, as a result, that the museum’s life science exhibits 

were fundamentally incompatible with a broader respect for life in all its forms. “My simple point 

of view is that animals have their own things to do in their natural environment, and that should 

be respected,” Startt wrote. If visitors wanted to experiment on something, she concluded, they 

would do better to experiment on themselves. “It may be of more learning to folks to have more 

tools for self-exploration available—the bicycle reading one’s heartbeat and the simple EMG 

register are well thought through in this respect.”44 Ultimately, many Exploratorium visitors con-

cluded that the museum prioritized scientific methods and discoveries over the preservation 

of biological life. Rather than teaching a simple scientific concept and drawing attention to the 

excitement of doing life science, as its designers had intended, the Watchful Grasshopper inter-

action with live animals through experimentation led museum visitors to reflect on the limits of 

science.
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Conclusions: Reflections on the 
Implications of the Exploratorium 
Model for Collecting
Oppenheimer had argued (in a 1972 American Journal of Physics essay) that his institution con-

tributed to the post-Sputnik goal of general science literacy but that it also “responded to the 

criticisms and the tenor of its times.” The Exploratorium, he wrote, provided opportunities for its 

visitors to “become involved in their own [science] education process [in ways] that are difficult 

to achieve in school classrooms or through books, films, or t.v. programs.”45 Still, Oppenheimer’s 

insistence on object-based learning and on the centrality of the museums to realizing this peda-

gogical objective remained atypical in the science education and public understanding of science 

communities of its founding time and place: the early 1970s in the United States. For instance, in 

its 1971 position statement “Science Education for the ’70s,” the U.S. National Science Teachers 

Association identified a very Oppenheimer-esque understanding of scientific literacy as its most 

important objective: “The major goal of science education is to develop scientifically literate 

and personally concerned individuals with a high competence for rational thought and action” 

in society, but at the same time, this statement made no mention of museums or their exhibits as 

institutionally central to this goal.46 Likewise, later that same year, when the more scientist-heavy 

American Association for the Advancement of Science (AAAS) Commission on Science Educa-

tion issued its summary recommendations, museums were similarly neglected as possible sites 

for new programs. Also in 1970, when the first AAAS “Report of the Committee on the Public 

Understanding of Science” appeared, it too heralded the importance of science literacy but made 

no mention of museums.47 

	 The successes and failures of hands-on science centers in the United Kingdom reflect his-

torical complexities similar to those of the U.S. context but perhaps could be distinguished by 

a greater unity of curatorial purpose than the U.S. experience of what might be called “the Ex-

ploratorium effect.”48 In the United Kingdom, the growth of hands-on interactive displays like 

those at the Exploratorium took off slightly later, in the 1980s and 1990s, and was tied up with 

the Public Understanding of Science movement.49 But if, as Dorothy Nelkin has argued about the 

communication of science in America most broadly, U.S. science education was a major force and 

was to be “shaped by the co-operation and collaboration of several communities, each operating 

in terms of its own needs, motivations and constraints,” then the late 1960s represented a time 

when there was little sustained coordination and cooperation between what would later become 

American science museums’ most important backers: educational policy makers, scientists, and 

science educators.50 This lack of coordinated communication persists in the United States, and 

to some extent in the United Kingdom, to this day. Even while professional organizations like 

Association of Science and Technology Centers work hard to promote dialogue about the effec-

tiveness of hands-on exhibits through conferences and online platforms, much of this dialogue 
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stands to be lost to history. It remains professional chatter (often not published in peer-reviewed 

museum studies journals), or when it is published, it appears in places that are far-flung, tailored 

to one or another of those groups with a contemporary interest in science museums’ display 

practices (for instance, science educators or curators or historians of science) rather than to the 

broader interdisciplinary audience whose experiences with these displays might enliven and 

inform the conversation.

	 Such historical insights, in turn, might prove instructive for contemporary science museum 

collectors interested in both documenting and displaying the material complexity and the critical 

dialogue around hands-on displays as artifacts themselves. Collecting the remnants of retired, 

but long-running, hands-on exhibits, like the Watchful Grasshopper, would create opportunities 

for the curatorial narration of science museums’ institutional conflicts in the creation of displays. 

This, in turn, might one day provide useful for enabling future museum visitors (not to mention 

historians) to understand how science centers’ successes and failures were not inevitable but 

achieved, not born writ large from the genius of one man but created through trial and error. 

Although any original hands-on visitor-driven exhibit interaction can (almost by definition) never 

be authentically recreated for future museum visitors, present and future heirs to the Explorato-

rium experience could be encouraged to think critically—in the best sense—about how hands-on 

exhibits often fail before they succeed (just as science and scientists do). They might be engaged 

to think about the purpose and meaning of displays that were contested by visitors even while 

they were supported by designers and scientists and what that contestation tells us about produc-

tive—or unproductive—public involvement with exhibit design. The Exploratorium itself has 

shown some self-awareness in this regard by staging an online exhibit, for instance, about how a 

single exhibit—the Bernoulli blower—has been appropriated and modified by museums around 

the world in order to fit site- and culture-specific contexts.51 But the story of hands-on exhibits 

could potentially be of interest as more than just a tale of local variations on a universal form—as 

one might narrate, say, regional takes on objects like pottery vessels or fine china. 

	 The diversity and complexity of hands-on exhibits further justify collecting them for display 

since they are powerful artifacts, capable of inducing visitors to be more reflective about the ex-

periences (present and past) of encountering displays in science centers and museums. Hands-on 

exhibits embody received explanations of the natural world given by scientists of a particular era 

while at the same time being representative of the science education ideals and (literally) sites 

of the public consumption of science in the post–World War II era.52 As such, although perhaps 

not precious or aesthetically beautiful one-of-a-kind objects, they merit some consideration for 

displaying the intersecting histories of museums, public science, and science education.53 

	 This view may not be one Oppenheimer himself would have supported, for his designers’ 

Exploratorium displays aspired to be ephemeral in quality and design even while they appealed 

to universal scientific principles and assumptions about learning. But surely we, as historians and 

museum practitioners, must rally behind the important idea of collecting to convey the science 

museum experience itself to a broader public in each generation54—and it is in this sprit that 
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curators must begin to engage more systematically with the legacy of the Exploratorium exhibit 

model. The Exploratorium model’s successes and failures pose an ongoing challenge, but it is a 

challenge not unlike one that curators already face in the contradictory nature of technoscience 

itself, so why should it not also apply to its museums: to put on display a phenomenon and a set 

of practices that are at once both responsible for major scientific and quality of life improvements 

and sustained and driven by complicated constellations of personal and professional experiences 

and motives. 
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INTERVIEW WITH 

James Hyslop

The following is an interview with� James Hyslop, Associate Director and Head of Department, 

Science and Natural History, Christie’s, London, UK, from 23 July 2014. Private collecting offers 

a particular route for the commodification and preservation of artifacts; while the market for re-

cently-made science and technology items remains small, some trends can be discerned.

Could you describe a particularly memorable encounter with a post-1945 
artifact of science and technology?

I remember it very well—it arrived just too late to fit into the catalog alongside scientific instru-

ments and books, so it was offered in a general books and manuscripts sale. It was a typescript of 

the communications between Mission Control and the crew of Apollo 13. In terms of desirability 

it had a lot going for it: rarity—it was one of 41 copies given out to journalists covering the event; 

the condition was very good, and it had desirability that would appeal not only to book collectors 

but to a wider audience. Perhaps it appeals to a public audience because of the Tom Hanks movie, 

but it is certainly a great example of big science producing an iconic item that fits nicely into 

well-established collecting categories.1

Does postwar science and technology feature much in your work?
While postwar and contemporary art is a huge sector of the market, it’s still relatively rare to see 

items of postwar science and technology. For example, in the sale of the Richard Green Library 

of important scientific books, of the 347 lots only 17 were postwar.2 Collectors tend to favor much 

older texts. We see even greater disparity with instruments.

	 I don’t think this is a matter of aesthetics—although practical considerations of space are, 

of course, an issue, a private collector could have room for 20 Victorian microscopes or one scan-

ning electron microscope. Very recent items don’t often come to dealers as there tends to be a lag 

before families send them to market. But, generally, there is a preference for older items which 

have acquired the prestige of age. 
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Collectors tend to lag behind curators historiographically—they’re still interested in “great men 

of science” and heroic narratives of progression. Texts from the Scientific Revolution, Newton, 

Darwin, and Halley are always popular. This creates a survival bias in what is collected and pre-

served. A small number of collectors do specialize in areas like phrenology or specifically seek 

out “dead ends.”

What kinds of postwar artifacts might interest collectors?
Ultimately, to sell an item for a top price in the current art market, you need a brand. What would 

we consider the masterpieces of postwar science? Maybe DNA, the Higgs boson, K-T boundary, 

plate tectonics, or climate change. Famous names like Stephen Hawking would also appeal.

While it’s possible to identify episodes or people that would have appeal, identifying an artifact 

is harder. I wasn’t surprised when Francis Crick’s “Secret of Life” letter was sold for $6 million 

by Christie’s in New York in 2013—the type of collector who would happily spend millions on 

a work by Copernicus or Newton is looking for something unique or rare, whereas offprints of 

Crick and Watson’s 1953 Nature paper are relatively common so not of huge value.3 

	 In recent years it’s become even harder to identify a “collectable moment.” When the 

Human genome was published in 2000, it was still possible for dealers to buy up offprints and 

sell them on. But in 2012 the Higgs boson discovery was announced to the world via an online 

seminar. The subsequent publications in Nature and Science are again too common to be valu-

able, as are the newspaper front pages. Some of CERN’s [the European Organization for Nuclear 

Research] technology is beautiful, but it’s unlikely to come to the commercial market—and again 

space is an issue.

	 Collectors who are interested in current science might find a past artifact speaks to their in-

terests—in 2012 Christie’s sold nine samples of deep-sea mud collected by H.M.S. Egeria. Such 

samples are now often used to build up historical climate records.4

	 One area which has generated plenty of physical relics is space technology, which has built 

up its own industry. There’s the relative rarity of space-flown items, but I also think the appeal of 

this topic goes beyond the science collectors to enthusiasts of Americana or the wider art market. 

For example, the Lunar Orbiter geologic maps are visually stunning in their own right. 

Are there any particular artifacts of post–World War II science and 
technology that you would single out?

For collectors, one item of major interest is the Enigma machine—wartime, of course, but only 

available on the market some time later. Many acquire this as a representation of the protohistory 

of computing because there’s nothing of Bletchley Park or the first computers to collect. Enigma 

machines keep making headlines at auction, and their value is growing as the Turing story be-

comes more widely known.

	 The Apple 1 is also very popular—the “birth certificate” of what is now such a famous brand 

(Figure 1). There’s a tension that many collectors want items to be in their original form but 
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also in working order—so an Apple 1 that had a different capacitor to usual, even though Steve 

Wozniak informed me that they were routinely replaced, would have less market value.

Notes
  1.	 Christie’s Sale 7590, Lot 94, “Mission Commentary” for Apollo 13, http://www.christies.com/lotfinder/books-manuscripts 

/apollo-13-the-mission-commentary-for-apollo-5080788-details.aspx?from=searchresults&intObjectID=5080788&sid=0f156665
-55cf-4f1b-a7d4-439d0867fcb0 (accessed 12 April 2017).

  2.	 Christie’s Sale 2013, Important Scientific Books: The Richard Green Library, New York, 17 June 2008, http://www.christies.com 
/lotfinder/salebrowse.aspx?intSaleid=21644&viewType=listview (accessed 12 April 2017).

  3.	 Christie’s Sale 2806, Lot 1, The Francis Crick “Secret of Life” Letter, http://www.christies.com/the-francis-crick-secret-24391 
.aspx (accessed 12 April 2017). 

  4.	 Christie’s Sale 4826, Lot 35, Nine Deep Sea Mud Samples, http://www.christies.com/lotfinder/lot/nine-deep-sea-mud-samples 
-june-july-1890-5548756-details.aspx (accessed 12 April 2017).

1. 
An Apple 1, likely to be one of the first 25 assembled, sold by Christie’s in 2013. © Christie’s Images Limited 2017.

http://www.christies.com/lotfinder/books-manuscripts/apollo-13-the-mission-commentary-for-apollo-5080788-details.aspx?from=searchresults&intObjectID=5080788&sid=0f156665-55cf-4f1b-a7d4-439d0867fcb0
http://www.christies.com/lotfinder/books-manuscripts/apollo-13-the-mission-commentary-for-apollo-5080788-details.aspx?from=searchresults&intObjectID=5080788&sid=0f156665-55cf-4f1b-a7d4-439d0867fcb0
http://www.christies.com/lotfinder/books-manuscripts/apollo-13-the-mission-commentary-for-apollo-5080788-details.aspx?from=searchresults&intObjectID=5080788&sid=0f156665-55cf-4f1b-a7d4-439d0867fcb0
http://www.christies.com/lotfinder/salebrowse.aspx?intSaleid=21644&viewType=listview
http://www.christies.com/lotfinder/salebrowse.aspx?intSaleid=21644&viewType=listview
http://www.christies.com/the-francis-crick-secret-24391.aspx
http://www.christies.com/the-francis-crick-secret-24391.aspx
http://www.christies.com/lotfinder/lot/nine-deep-sea-mud-samples-june-july-1890-5548756-details.aspx
http://www.christies.com/lotfinder/lot/nine-deep-sea-mud-samples-june-july-1890-5548756-details.aspx
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INTERVIEW WITH 

Osamu Kamei

The following is an interview with� Osamu Kamei, Deputy Director, Center of the History of 

Japanese Industrial Technology, National Museum of Nature and Science, Tokyo, Japan, from 

15 July 2015. As the origins of the museum go back to the 19th century, its practices of collection 

are of particular interest in view of the transformation processes in science and technology in 

Japan from the Meiji period onwards, and the acceleration of industrial production post-1945.

Please highlight examples of post-1945 artifacts of science and 
technology that are special to you.

As a first example of the Japanese history of industry and technology, I’d like to select the high-

speed train Shinkansen, which completely changed people’s attitude toward transportation. In 

particular, the speed of the service, where a distance of 500 km covered during a journey takes 

approximately two hours, and its reliability, with no accident casualties over half a century since 

its opening in 1964, are remarkable.

	 Second, I would like to highlight the first mass-produced electronic pet, named AIBO (ar-

tificial intelligence robot), developed by Sony Corporation from 1998 on. The price of this robot 

was very high, but we bought one as a collection object, or “specimen,” if you like, for our insti-

tution, which is a museum of both natural history and the history of science and technology.

How did today’s National Museum of Nature and Science emerge from 
predecessor institutions?

Established in 1877, the National Museum of Nature and Science (NMNS) is one of Japan’s oldest 

museums. The names and functions of the museum have changed over time; they included Min-

istry of Education Museum, Tokyo Museum, Tokyo Science Museum, the National Science Mu-

seum of Japan, and, currently, NMNS as of 2007. Its missions were also transformed; they ranged 

from social education, school material provision, and the study of and education in the fields of 

engineering, the environment, biodiversity, science communication, and the Anthropocene. 
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	 At the time when social education was necessary, NMNS contributed to raising people’s 

awareness of the foundation of modern industry through events such as the Time Day (from 

1920 on) and the Green Cross for Safety and Hygiene of working environments (from 1919) 

using lectures and exhibitions. During the nation’s era of robust economic growth (1954–1973), 

it served as a museum of science and technology and also became a natural history museum from 

the 1970s, with a thematic focus on biodiversity amid growing concerns regarding pollution and 

environmental degradation. As such, the museum today is a combination of two genres, a science 

and technology museum and a natural history museum. Over time, natural history has increased 

in importance and is now the major focus. 

	 Today, the museum hosts laboratories conducting polar research and research in other fields 

while also providing facilities engaged in natural history studies. The sections of the museum 

handling material collection and material preservation are located in Tsukuba City on the out-

skirts of Tokyo, consisting altogether of 11 institutes, centers, and departments, which also com-

pose the Center of the History of Japanese Industrial Technology.

When did the documentation of post-1945 artifacts of science, 
technology, and industry become a priority at your center?

Starting in 1997 and going to 2001, the museum conducted a first research study entitled “Re-

search on the Evaluation, Preservation and Publication of Materials on Industrial Technology,” 

drawing on contributions from industry, academia, and the public sector. The study led to the 

creation of a public online database of artifacts that illustrate the development of industrial tech-

nology in Japan. The approach created a network of information and documentation through 

systematic surveys of key technological developments. The study also established a system for 

registering important artifacts to promote their preservation. On the basis of their findings, the 

committee in 2001 outlined the need to create a central source of information on historical indus-

trial technologies and their applications. At that time, the vast number of artifacts to be preserved 

was so large that it looked to be physically almost impossible. Therefore, we decided to at least 

establish documentation on the technologies. The NMNS has published the information on its 

website. In the case of emergency of preservation, other museums or the NMNS could save the 

artifacts. In 2002, the museum launched the Center of the History of Japanese Industrial Tech-

nology, which opened to the public in Tokyo in 2003. In 2012, it moved to its current location in 

the museum’s newly built Tsukuba Research Wing.

	 The center collects, evaluates, and preserves material related to the industrial history of 

Japan from 1900 on with a focus on the period after 1950 until around the year 2010. Major initia-

tives of the center include (1) conducting surveys on the whereabouts of artifacts and documents 

related to the history of industrial technology, (2) performing systematic historical research on the 

development of technologies, and (3) selecting and registering essential historical records on sci-

ence and technology with the aim of preserving them. Surveying the whereabouts of artifacts and 

documents involves creating records listing their locations, with the aim to create an exhaustive 
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catalog of items covering the approximately 500 industrial categories of the Japan Standard In-

dustrial Classifications System. The process requires the support of academic, industrial, and 

other stakeholders in locating historic industrial and technological materials.

What does the documentation process look like?
Surveys are at the heart of the documentation process. The surveys target physical artifacts, 

facilities, or records that have contributed to the development of Japan’s industrial technologies 

in selected technological fields. These are objects for which at least 10 years have elapsed since 

their manufacture, creation, or use. Such items include the following categories: (1) facilities and 

structures, (2) equipment, machines, instruments, and tools, (3) manufactured products, includ-

ing finished goods, prototypes, and mass-produced items, (4) components, materials, and sam-

ples, (5) specimens, models, replicas, photos (particularly rare images taken in the prewar period 

that are not easily duplicated), and microfilm, (6) blueprints, specifications, industrial standards, 

and catalogs, (7) printed matter (such as documents, books, and periodicals related directly or 

indirectly to the development of selected technologies, generally excluding company histories), 

archival footage, and patent publications, (8) diaries, notes, and other manuscripts, and (9) other 

actual objects.

	 The director general of the NMSI extends commendations for such materials after surveys 

have been conducted by the center and deliberations have been completed by an external com-

mittee of experts. Registered materials are given registration cards and awarded commemorative 

plaques and then posted online. Systematic surveys on the history of technologies are conducted 

over roughly one-year time frames by NMNS teams of chief investigators, often assisted by re-

tired engineers who have been actively involved in the development of industrial technology. 

The center publishes the results of its research in report form for library and online access (http://

sts.kahaku.go.jp/) and has released survey and research reports in 100 fields since 31 March 2017. 

The center intends to release more English translations of entire surveys, but at this point only a 

few such translations are available online.

What aims do you foresee for the work of the center? Where do you see 
challenges?

A first immediate aim is to increase the number of research reports of the center. We hope that 

the survey results, increasing in number and range, will be used by a larger variety of persons. 

The second aim is to deepen the research into the life of humans, in conjunction with the re-

search units within the museum that are more focused on natural history. Fortunately for us, 

awareness of the activities of the center has been increasing. Recently, we started to establish a 

framework in order to discuss the linkage between diverse findings in the history of technology 

by surveying changes from the perspective of the Anthropocene. We aim to identify the char-

acteristics of industrial technology in Japan and other countries by examining the temporal and 

spatial characteristics of the Anthropocene from the perspective of global natural history. 

http://sts.kahaku.go.jp/
http://sts.kahaku.go.jp/
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Please provide us with an example of an artifact that for you describes 
typical features of recent science and technology.

One salient artifact in the history of Japanese industrial technology is the development of the 

Walkman by Sony, represented by the TPS-L2 series introduced in 1979, which became an inno-

vation in consumer electronics (Figure 1). Several features in the history of the Walkman, which 

became a huge commercial success, are remarkable: (1) It led to the creation of a worldwide 

social phenomenon of public listening in which mobile music became part of youth culture. (2) 

Mass production of this device was at the front of the future trend of miniaturization. (3) From 

the perspective of history, it was a rather short lived analog technology that was replaced by the 

increasing availability of digital formats from the 1990s on. 

1. 
Sony Walkman TPS-L2, the first stereo cassette player. The first iteration of the worldwide smash hit Walkman. Courtesy Sony.
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INTERVIEW WITH 

Roland Wittje

The following is an interview with� Roland Wittje, Chair of UNIVERSEUM Working Group on 

Recent Heritage of Science and Associate Professor in History of Science and Technology, Indian 

Institute of Technology, Madras, India, from 15 April 2014. At the time of the Interview Roland 

was lecturer in history of science at the University of Regensburg, Germany. Universities are key 

sites for the advancement of knowledge through research and teaching, and hence, for the emer-

gence of scientific and technological collections beyond museums. In this interview, we ask about 

the changing perspectives for university collections during the twentieth century.

What were your first encounters with post-1945 artifacts of science and 
technology?

This is a simple question to answer, as it makes reference to my motivation to follow this cause. 

When I started to become interested in scientific and technological heritage, my interest was 

mostly in the nineteenth century, in particular Heinrich Hertz’s experiments on the propagation 

of electric waves. At the Research Group on Higher Education and History of Science of the Uni-

versity of Oldenburg, we were conducting research in the history of science through reworking 

or replicating historical experiments by studying historical instruments and other sources, build-

ing precise replicas, and carrying out experiments. By the way, nobody called things “material 

culture” back then. Only when I went to the Norwegian University of Science and Technology 

(NTNU) in Trondheim in 1997 as a Ph.D. student working with Mikael Hård on the history of 

physics in Norway did I get in touch with more recent things: we were looking for archive ma-

terial but also dealt with a scientific instrument collection that I assembled and curated. These 

were mostly teaching objects that would have been part of a physical cabinet, a typical canon 

related to the experimental lectures on physics. 

	 There is, however, a strong discontinuity when looking at the objects that came to the physics 

department after World War II. This is partially due to changes in the department personnel but 

also due to the dramatic growth of research activity after 1945. This is very typical of university 
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collections; you find this in many places in Germany as well in view of the new institutions that 

were created in the 1960s and 1970s. In Trondheim out of initially one professorship they created 

three professorships, and a large industrial research institute was founded. I did select some of 

the objects from the post-1945 period for the collection. 

What makes collecting post–World War II artifacts of science and 
technology special?

While it was relatively easy to decide what to collect until 1945, as you basically preserve what is 

still there and it was not a big problem in terms of space requirements and it was easy to convince 

people that these are things that have to be taken care of, with the objects of the time after 1945 

you do have a whole series of problems. Some of the objects are actually installations that are too 

large to be moved, e.g., a large particle accelerator that was built locally into the building. A sec-

ond issue is that, often, it turns out that experiments had been disassembled and that parts were 

missing. This can be called the “laboratory cannibalizing phenomenon”: a lot of the equipment 

that was there was modular, think of instrument racks, for example, and had been used by more 

than one person or research group in different experiments, with the result that things eventually 

went missing. While you can present essential parts of a particle accelerator as an iconic piece, 

they are not representative of the whole scientific experiment. Paolo Brenni has written a very 

nice article on this subject, how this development from tabletop to complex laboratory settings 

took place.1 So while I tried to select objects from the post-1945 period, there were reasons why 

it could not be as systematic. 

How can post-1945 artifacts be embedded into historiography?
A lot of the historiography for post-1945 history of science is American historiography, and a lot of 

it is directly related to political history. I have made that point in one of my articles where I wrote 

about the first German nuclear research reactor in Garching.2 As we are dealing with contempo-

rary history, this is, of course, problematic but at the same time also highly interesting. History 

writing in itself is getting more and more contested when approaching the present. To exemplify 

this point, I recall a process at NTNU where a group of retired scientists wrote on the develop-

ment of physics at their own department. Clearly, writing on a period in which these researchers 

were active themselves was very difficult, in particular getting agreement on what actually had 

happened, what went wrong, and what went right. Scientists being engaged in their own history, 

therefore, is one of the topics to deal with when looking at building collections after 1945.

Which stakeholders need to be involved in the collection of recent 
artifacts of science and technology?

When establishing the collections in Trondheim, I conducted a survey across the whole techni-

cal university, which was a very interesting experience for me. I worked with scientists but also 

with technicians and instrument makers. One of my most important sources turned out to be a 
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glassblower who had rescued a lot of instruments about which he also knew a lot of things, having 

built or repaired them. In fact, the professor or the manager of the group does not always turn out to 

be the most important source of information; he or she might not even know how to use the equip-

ment. With this survey, we were trying to get an understanding of the work of the departments and 

institutions through their material culture as you would call it today. Still today, I find that concept 

of material culture problematic; nobody really knows what it refers to. When collaborating with the 

people at the university, it was important to avoid any kind of museological jargon that they would 

not know. One has to remember that these staff members have a lot of things to do; if I wanted 

to get their support, I had to make their life easy. Working with scientists and technicians has the 

advantage of having a kind of peer preselection and preservation of what is relevant for describing 

their trade. In terms of the risks and pitfalls, of course, you cannot adopt the scientists’ narratives 

as historical narratives without investigation, and some of them actually can be competing with 

each other. One local anecdote related to this assessment: When visiting the Physics Department at 

the University of Regensburg in Germany with my seminar, the students found out that there are 

several retired professors claiming to have been the first professor of physics at the University of 

Regensburg! Of course, there might be different interpretations of what it means to be first. So with 

material heritage, you always have to challenge and question the selection of the actors who are 

often still around. But I argue that we should try to establish a dialogue with them, and we should 

listen to them as at some point, in fact, the history does belong to them as well.

Which narratives should be considered for the collection of recent 
artifacts?

When I started to write my Ph.D. thesis in Trondheim, there were people expressing the opinion 

that there was nothing to be written about there as nobody got the Nobel Prize. Then I had to start 

to argue against that, stating that Nobel laureates cannot be representative of the development of 

science. And scientists are, in fact, aware of this; there is also a lot of local narrative of perceived 

failure, and sometimes one has to battle against resistance. Disproving local myths and anecdotal 

history can be quite difficult; even if you show evidence from the archives, some people will 

strictly follow the narratives that they have created. What makes the university collection a very 

different setting from a museum is that a large part of your audience is located within the univer-

sity itself. Take the collections in Regensburg: very little is on display, and we actually do not want 

it all to be on display; the collection is a resource for the history of science. Public understanding 

of science is not the single relevant mission; the university collection is part of the university and 

should be seen as a resource for teaching and research within the university in the first place.

Which challenges need to be addressed in the future?
Acknowledging that not enough is being done to preserve recent scientific heritage at universities, 

one also has to see that there is no easy solution to the problem. Universities as institutions have 

to realize that large national museums cannot solve their problem of material heritage. Becoming 
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aware of and protecting their own heritage offers many opportunities, and universities have the 

intellectual resources to protect as well as to mobilize this material in all kinds of interdisciplinary 

projects. There should be guidelines, but we cannot be too procedural. With the working group, we 

are working on selection criteria and a toolkit that can help with the development of collections.3 

	 The reaction from the community was actually very positive. Within German universities, 

the decentralized Kustodie structure is a good model if it is properly implemented. There should 

be staff qualified to survey the material who know the spaces and the university. One of the things 

to look at is, of course, equipment that is still being used. A second aspect to cover is to have 

control over the procedure of the retirement of staff, a process in which, often, a lot of things 

disappear very rapidly. One should not leave these decisions to only scientists; there should be a 

larger dialogue on the value and the potential of these objects. The basic message to understand 

here—this is true for recent history of science and technology as well as other periods—is that if 

you don’t have an archive, be it papers or object collections, you don’t have history.

Please describe an artifact that represents the challenges of post-1945 
collections. 

A typical object is the canonical electronics rack of the physics laboratory. Figure 1 is a photo-

graph from May 1955 showing engineer Utne in the klystron laboratory at the Norwegian Insti-

tute of Technology in Trondheim.

1. 
Engineer Utne in the klystron laboratory, May 1955, Trondheim, Norwegian Institute of Technology. Courtesy of Schrøder-
arkivet, Trøndelag Folk Museum, Trondheim, Norway.
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INTERVIEW WITH 

Thomas Söderqvist

The following is an interview with� Thomas Söderqvist, Emeritus Founding Director and Pro-

fessor Emeritus, Medical Museion, Copenhagen, Denmark, from 12 June 2014. Söderqvist is 

particularly interested in the representation of recent biomedicine, and has criticized museums 

for being overly pedagogical in display and interpretation. Here, he argues for closer engagement 

with artifacts themselves.

What are your early memories of encountering post-1945 artifacts of 
science and technology?

I grew up in Sweden in the 1950s and 1960s, when everyday life was still pretty unaffected by 

modern science and technology. I mean, there were quite a few pre-1945 artifacts around, like 

cars, tin cans, electric bulbs, and AM radios and so forth. We had an Electrolux refrigerator in 

the kitchen and a black Ericsson telephone in the living room. But I never thought about these 

as science-technology (sci-tech) artifacts, of course. They were just mundane items in our mun-

dane life.

	 I don’t think I encountered any post-1945 sci-tech artifacts until the early 1970s, when I 

began my first (aborted) Ph.D. in biochemistry at Karolinska Institute in Stockholm. I remember 

becoming immediately fascinated by things like scintillation counters, NMR spectrometers, and 

automated protein sequencers.

	 I didn’t have a clue about the history of these things, of course. But I still remember feeling 

they were qualitatively different from the traditional mechanic instruments I had had my hands 

on during my undergraduate studies. With their plastic casings and LED indicator lights they 

looked like science fiction objects, and they fitted perfectly into the futuristic vision of Gordon 

Rattray Taylor’s 1968 bestseller The Biological Time Bomb, which, by the way, made an immense 

impression on me.1
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Could you outline some of the challenges of collecting artifacts of recent 
science and technology?

It shouldn’t be necessary to remind museum directors that collecting recent biomedical science 

and technology means that their curators must have quite advanced sci-tech training. I think you 

definitely need a Master’s degree or even a Ph.D. in a biomedical, medical engineering, biotech 

field or something similar.

	 First of all, you need it because you must make decisions about what to preserve from the 

deluge of things of recent sci-tech culture. The volume and diversity of new biomedical scientific 

instruments and medicotechnical gadgets is just overwhelming, and you need sci-tech training 

simply to sort the wheat from the chaff.

	 You need sci-tech training also because you must be able to cooperate with scientists and 

engineers on a kind of peer-to-peer basis. You must be able to ask the right questions at the right 

moment to get your hands on the many accessory utensils of the biomedical platform behind the 

instrument that the scientists, doctors, or engineers wish to donate to the museum, things which 

the practitioners usually don’t consider important but are as important as the instrument itself.

	 For example, a genome sequencing platform isn’t just the Illumina machine—it’s also the 

many protocols and procedures that precede the actual sequencing and the interpretation proce-

dures afterward—and you need all of that as part of your acquisition project.

Is it possible to embed the study of post-1945 artifacts into the 
historiography of recent science and technology?

First, I must apologize for having edited two volumes about the historiography of recent science 

and technology without paying any attention whatsoever to museums, collections, and material 

history.2 The omission reflects the fact that the material history of science and technology has 

been badly neglected in historiography. My only excuse is that I put these volumes together be-

fore I became involved in museums. 

	 That said, I think all the problems and advantages of recent historiography that were dis-

cussed in these two volumes are true for material history as well. It is difficult to construct history 

as it is happening and to handle the insanely accelerating amount of new artifacts. On the other 

hand, the fact that practitioners are still alive is a great source of joy and is an immense advantage 

for historians, at least if they bother to use the time and energy to engage with them.

What’s your view of the recent trend toward more storytelling-based 
acquisition policies in museums?

Narratives are so much overrated. There is a growing mythological discourse around the primacy 

and value of storytelling in museums that I think needs to be stemmed.

	 I would say that the belief in storytelling is a consequence of the contemporary transition 

of museums from being research institutions with artifact collections to becoming teaching 
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and entertainment institutions. Curators have been replaced by museum educators and com-

municators, who believe exhibitions must tell “stories” to catch the attention of kids and their 

guardian members of the public.

	 But this is nonsense because stories actually play a pretty subordinate role in human lives, 

whereas episodic accounts, descriptions, instructions, explanations, and direct object handling 

are very important in our everyday routines. The same goes for museums. In spite of the fact 

that communicators and pedagogues try to construct more or less fancy overarching narratives, 

visitors still (wisely, in my mind) direct their attention to the singular artifacts and the descriptive 

labels and maybe cast a glance at the accompanying explanatory poster to catch the basic concept 

of the room or display. The alleged story blissfully gets lost.

	 In addition, I’m sure that narrative-driven acquisitioning is bound to fail. Museums shouldn’t 

collect artifacts as “examples” to fit preconceived stories, but rather base their acquisitions on the mer-

its of the things themselves, their composition, their historical significance, and their aesthetic value.

	 I must admit I very much prefer artifact-driven collecting and exhibitions. When I do exhibi-

tions, I browse collections of our own and other museums for things I never thought existed, and 

then I visit working laboratories and clinics to watch how things are used in action—and bang! I 

get an idea for an exhibition or display. So I use theoretical concepts, and I use concrete material 

things, but stories have very little place in my description of what museums do. 

How are different types of museum addressing the challenges of  
post-1945 artifacts?

The material history of post-1945 molecular biology and biotech is largely about what happened 

in the United Kingdom and United States, and therefore, curators in the Science Museum and 

the Smithsonian have an immense advantage when it comes to collecting on a national basis. Yet 

these museums allocate few resources to preserving their extremely rich contemporary national 

sci-tech heritage. It’s pretty disappointing.

	 University museums, on the other hand, don’t need to think in terms of systematic and 

representative collections. I think our job instead is to develop curation as a field of academic 

research and practice. We should concentrate on developing a kind of best practice for collecting, 

preserving, exhibition and event making, and not least artifact-based teaching at the university, 

all based on our own research, of course—whether it be in history, philosophy, aesthetics, ethnog-

raphy, or material culture studies.

Could you identify an artifact that for you sums up recent science and 
technology?

Illumina Genotyping BeadChips (Figure 1) were used in a University of Copenhagen research 

project to identify novel genetic variations that result in increased risk of common metabolic 

disorders. Six hundred fifty chips donated by BGI, Shenzhen, were assembled for the installation 

Genomic Enlightenment at Medical Museion.3 
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Notes
  1.	 Gordon Rattray Taylor, The Biological Time Bomb (London: Thames and Hudson, 1968).

  2.	 Thomas Söderqvist, ed., The Historiography of Contemporary Science and Technology (Amsterdam: Harwood Academic, 
1997); Ronald E. Doel and Thomas Söderqvist, eds., The Historiography of Contemporary Science, Technology and Medicine: 
Writing Recent Science (London: Routledge, 2006).

  3.	 Medical Museion, Genomic Enlightenment, http://www.museion.ku.dk/whats-on/exhibitions/genomic-enlightenment (accessed 
11 April 2017).
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