
MANUAL ACOUSTIC TRACKING REVEALS 
THE SPATIAL ECOLOGY OF GIANT TREVALLY 
AT A REMOTE SOUTH PACIFIC ATOLL, 

WITH IMPLICATIONS FOR THEIR MANAGEMENT

 Alexander Filous, Robert J. Lennox, 
Andy J. Danylchuk, and Alan M. Friedlander

ATOLL RESEARCH BULLETIN NO. 625





MANUAL ACOUSTIC TRACKING REVEALS  

THE SPATIAL ECOLOGY OF GIANT TREVALLY  

AT A REMOTE SOUTH PACIFIC ATOLL,  

WITH IMPLICATIONS FOR THEIR MANAGEMENT 
 
 
 
 
 

Alexander Filous, Robert J. Lennox,  
Andy J. Danylchuk, and Alan M. Friedlander 

 
 
 
 
 
 
 

Atoll Research Bulletin No. 625  13 September 2019   
 
 
 
 
 
 
 
 
 

 
  

Washington, D.C. 



 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
All statements made in papers published in the Atoll Research Bulletin are the sole responsibility 
of the authors and do not necessarily represent the views of the Smithsonian Institution or of the 
editors of the bulletin. Articles submitted for publication in the Atoll Research Bulletin should be 
original papers and must be made available by authors for open access publication under a  
CC-BY-NC license. Manuscripts should be consistent with the “Author Formatting Guidelines for 
Publication in the Atoll Research Bulletin.” All submissions to the bulletin are peer reviewed and, 
after revision, are evaluated prior to acceptance and publication through the publisher’s open 
access portal (https://smithsonian.figshare.com/ScholarlyPress). 
 
 
Published by SMITHSONIAN INSTITUTION SCHOLARLY PRESS 
P.O. Box 37012, MRC 957 
Washington, D.C. 20013-7012 
https://scholarlypress.si.edu/ 
 
 
ISSN: 0077-5630 (online) 
 
 
 

 
 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International 
License. 

https://smithsonian.figshare.com/ScholarlyPress
https://smithsonian.figshare.com/ScholarlyPress
https://scholarlypress.si.edu/
https://scholarlypress.si.edu/


CONTENTS 

 

ABSTRACT................................................................................................................................................. 1 
INTRODUCTION ....................................................................................................................................... 2 
METHODS................................................................................................................................................... 3 

Study Site.................................................................................................................................................. 3 
Tagging and Active Tracking................................................................................................................... 4 
Data Analysis............................................................................................................................................ 4 

Data Management............................................................................................................................ 4 
Survival............................................................................................................................................ 4 
Home Range and Site Fidelity..........................................................................................................4 
Spatial Overlap with the MPA and Habitat Types...........................................................................5 

RESULTS  .................................................................................................................................................... 5 
Description of Home Range Size, Behavior, and Overlap with the MPA............................................... 5 
Site Fidelity .............................................................................................................................................6 

DISCUSSION.............................................................................................................................................10 
ACKNOWLEDGMENTS ......................................................................................................................... 12 
REFERENCES .......................................................................................................................................... 12 

 

  



 



 
Atoll Research Bulletin, No. 625  1 

MANUAL ACOUSTIC TRACKING REVEALS  
THE SPATIAL ECOLOGY OF GIANT TREVALLY  

AT A REMOTE SOUTH PACIFIC ATOLL,  
WITH IMPLICATIONS FOR THEIR MANAGEMENT 

 
 
 

ALEXANDER FILOUS1,3*, ROBERT J. LENNOX2,  
ANDY J. DANYLCHUK1, and ALAN M. FRIEDLANDER3,4 

 
 

 

ABSTRACT 

Giant trevally (Caranx ignobilis) are important predators on the reefs of the tropical Indo-Pacific and research 
into their spatial ecology is needed to improve our understanding of their behavior and assist fisheries 
management. We used active acoustic telemetry to describe the fine-scale movements of giant trevally at 
Tetiaroa Atoll, including their home range, site fidelity, habitat use and spatial overlap with a small (21 km2) 
Marine Protected Area (MPA). The home ranges of giant trevally were small but varied among individuals 
(Minimum Convex Polygon 𝑋𝑋 = 3.2 ± 2.5 km2). All giant trevally exhibited site fidelity to their respective 
home ranges with a 31% average overlap in daily space use, but there was limited overlap in home ranges 
among individuals, with intra-individual spatial overlap significantly greater than inter-individual overlap (t = 
-4.93, df = 16.87, p-value = <0.001). There was only modest overlap (19 ± 19%) of giant trevally home ranges 
within the MPA and high spatial overlap of home ranges with deep lagoon habitats (90 ± 0.09 %). Our results 
indicate that MPAs could be an effective tool for the conservation of this species if they are implemented on 
an atoll-wide scale. However, in the case of managing recreational catch-and-release fisheries, rotational small-
scale temporal closures could be effective in regulating the angling pressure imposed upon giant trevally, 
provided post-release mortality is minimized. The results of this study provide the first detailed account of 
habitat use in this species and highlight the need for additional research on the factors contributing to the 
survival of caught-and-released giant trevally in predator dominated atolls, especially as their popularity as a 
target of recreational fisheries continues to grow, and fishing operations and agencies are faced with the need 
to manage their fisheries. 
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  INTRODUCTION  

Giant trevally (Caranx ignobilis) are important predators on the reefs of the tropical Indo-Pacific (Randall 
2005). Revered for their strength and aggressive nature, the quest for giant trevally on the shallow water flats 
of remote atolls is for many recreational anglers the pinnacle of saltwater fishing (McLeod 2016). As a result, 
giant trevally have become a popular target for recreational anglers and their populations now support 
recreational fishing tourism throughout their range (McLeod 2016). In addition to their importance to 
recreational fisheries, these predators play an equally important role in maintaining the balance of coral reef 
ecosystems by imposing a top down effect on lower trophic groups (Sudekum et al. 1991). In parts of their 
distribution where commercial fisheries actively target giant trevally, their numbers have been reduced to a 
fraction of their historical abundance and they are nearly extirpated from many of these costal ecosystems 
(Friedlander and DeMartini 2002; Friedlander et al. 2015). Large predators like trevally are likely to have a 
cascading effect on the behavior and abundance of their prey and competitors (Hammerschlag et al. 2015), and 
thus impacts to these predators have the potential to alter the function of the entire ecosystem (Friedlander and 
DeMartini 2002; Heithaus et al. 2008).  

Considering the importance of giant trevally to fisheries and coral reef ecosystems, research on their spatial 
ecology, specifically their movements, site fidelity and home range is needed to inform the management of 
their fisheries. The home range of an organism encompasses the spatially and temporally defined area in which 
an animal lives and periodically travels while engaged in its normal activities, including foraging and the 
maintenance of homeostasis (Burt 1943; Börger et al. 2008; Morrissey et al. 2009). Detailed information on 
the size of home ranges and movements away from them can assist in the management of fisheries by informing 
the design and efficacy of Marine Protected Areas (MPAs) to ensure that they are appropriately located and 
sized. Additionally, this information can elucidate critical habitats that should be protected from anthropogenic 
development, identify a species’ risk of contaminant exposure and help identify other spatial/temporal 
conservation actions such as seasonal closures in spawning aggregation sites, to preserve the quality of a fishery 
(Roberts and Polunin 1991; Kramer and Chapman 1999; Roberts et al. 2002; Sale et al. 2005; Moffitt et al. 
2009; Grüss et al. 2011; Wolfe and Lowe 2015).  

Both active and passive acoustic telemetry have been widely implemented to study the movement, 
behavior and home range of marine fishes (Heupel et al. 2006; Meyer et al. 2007a; Papastamatiou et al. 2009, 
2010), and as a result have become important tools in developing species-specific spatial management 
(Donaldson et al. 2014; Crossin et al. 2017; Lennox et al. 2018). Active acoustic telemetry involves outfitting 
a fish with an acoustic transmitter capable of emitting a signal at a short and continuous interval. This signal 
indicates a fish’s location and is decoded by a hydrophone permitting a fish to be precisely positioned for long 
periods, allowing for a nearly continuous record of daily movements (Voegeli et al. 2001). Detailed time series 
of individual positions provide information about the habitat preferences, home range, and behavior of an 
animal across short time scales (Meyer and Holland 2005; Papastamatiou et al. 2009). In contrast, passive 
acoustic telemetry involves tagging fish with a coded transmitter and provides a record of a fish’s presence or 
absence in a fixed array of acoustic receivers. The passive methodology allows for an investigation of long-
term movement patterns beyond the capabilities of active tracking but lacks the spatial and temporal resolution 
provided by active tracking (Voegeli et al. 2001). However recent advances in tracking technologies have 
improved the spatial precision from passive monitoring arrays with Vemco Positioning Systems (VPS), but 
are expensive and require more resources than traditional monitoring (Andrews et al. 2011; Espinoza et al. 
2011). 

The broad-scale movements of giant trevally have been studied with passive acoustic telemetry (Meyer et 
al. 2007b; Lédée et al. 2015; Filous et al. 2017a); these studies suggest that giant trevally exhibit site fidelity 
to core areas on isolated islands and atolls. However, in these studies giant trevally periodically moved outside 
of acoustic arrays, and average residency index’s ranged from 50 to 53 percent with large scale trans-atoll and 
in some cases intra-island movements observed (Meyer et al. 2007b; Lédée et al. 2015; Filous et al. 2017a). 
The presence-absence data obtained from the movements of this species in these fixed arrays leaves gaps in 
our understanding of the extent of their daily space use and behavior. Active tracking is labor intensive but 
provides fine-scale data necessary to fill the knowledge gaps in the spatial ecology of this species (Meyer and 
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Holland 2005; Afonso et al. 2009; Papastamatiou et al. 2009). Yet, apart from one study on the movements of 
juveniles, little research has been conducted to evaluate the fine-scale movements of adult giant trevally 
(Wetherbee et al. 2004). The objectives of this work were to utilize active acoustic telemetry to describe the 
natural movements and behavior of giant trevally including their home range size, site fidelity, habitat use and 
spatial overlap with a small MPA. Here, we present the first description of the fine-scale movements of this 
species in a remote South Pacific atoll, the results of which will contribute to the conservation of this species 
as their popularity continues to grow and fishing operations and agencies are faced with the need to manage 
their fisheries. 
 

METHODS 

Study Site 

Tetiaroa is a closed atoll in the Society Islands, 53 km north of Tahiti, in French Polynesia. The atoll is 
comprised of 12 motu, small islands, encircling shallow sand flats around a lagoon that descends to a maximum 
depth of 30 m and is characterized by sand and silt substrate with scattered coral pinnacles. The atoll supports 
a recreational fishery in which visiting anglers target giant trevally, bonefish (Albula glossodonta) and other 
reef-associated species. Additionally, a small MPA (21 km2) divides the center of the atoll longitudinally, 
effectively restricting the harvest or interaction with marine life in the southern half of the lagoon. Fishing is 
permitted in the northern part of the atoll, however, netting and spearfishing at night are prohibited throughout 
its interior (Figure 1).  

 
 

 

Figure 1. The location of Tetiaroa Atoll in French Polynesia, with its MPA designated by the white polygon. 
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Tagging and Active Tracking 

Giant trevally were captured with fly-fishing equipment in the sector of Tetiaroa’s lagoon that is open to 
fishing. Angling was carried out with 12-weight fly rods, 80-100lb fluorocarbon leaders, and flies tied on single 
4/0 barbless hooks. Upon capture, all giant trevally were brought on board the research vessel and placed on a 
padded surgical mat with a hose circulating sea water over their gills. Each fish was measured in fork length 
(FL cm) and surgically fitted with a V13-1L continuous acoustic transmitter (13 x 45 mm, Vemco, Halifax, 
Nova Scotia). Transmitters were surgically implanted into the body cavity of each animal through a 2 cm 
incision in the abdominal wall and closed with an interrupted nylon suture (Holland et al. 1999; Meyer and 
Honebrink 2005). The V13 continuous tags were programmed to transmit a single pulse at a unique frequency 
(65-70 kHz) every second for up to 30 d for individual identification. After release, all transmitters were located 
using a VR100 acoustic receiver (Vemco, Halifax, Nova Scotia).  

Following surgery, fish were returned to the water, revived on a shallow sand flat and released after 
showing signs of increased vigor. After 96 h we resumed tracking these fish by systematically searching the 
lagoon from randomly selected locations, and upon recovery their diurnal movements were monitored to obtain 
estimates of daytime home range size and behavior. Although we were able to decode all fish simultaneously, 
we were only able to track a single fish at a given time. Nonetheless, we noted the presence and location of 
other fish when they were within range. During tracking events the behavior of giant trevally and their 
interactions with other marine life was visibly observed and photographed. 

 
 

Data Analysis 

Data Management 
Data were filtered to ensure that at the time of detection a tracked fish was in proximity to the GPS locations 

recoded by the VR100 by excluding any detections less than 70 dB in signal strength. 
 

Survival 
To determine the survival of each fish, we observed tagged fish during tracking events and evaluated their 

survival based on the criteria that: (1) the fish was relocated and tracked at a minimum of two weeks after 
initial capture and release, and (2) each fish was observed during these later tracking events to ensure that the 
animal being tracked was still the instrumented animal and not a predator or scavenger that had assumed the 
tag of a giant trevally (Gibson et al. 2015).  

 
Home Range and Site Fidelity 

To describe the home range and site fidelity of giant trevally, the tracks of each fish were plotted in ArcGIS 
10.2 (ESRI) and the size and location of their individual home ranges were estimated using three metrics: the 
minimum convex polygon (MCP), the 95% kernel utilization distribution (KUD), and the 50% KUD. The 
MCP is the area of the polygon formed when connecting the outer positions of a tracked fish (Heupel et al. 
2004) and provides a measure of the size of this area. The 95% KUD is a probability distribution that provides 
a measure of space use within which there is a 95% probability of re-sighting an individual. This measure is 
considered the home range of an individual and similarly, a 50% KUD represents the area where there is a 
50% chance of finding an individual and represents an area of core use (Heupel et al. 2004; Papastamatiou et 
al. 2009). To measure an individual’s entire home range, we calculated these metrics from all their recorded 
geographic locations during the study. These polygons and their areas were calculated with the mcp and 
kernelUD functions in the adehabitatHR package in R and visualized in ArcGIS 10.2 (ESRI).  

To evaluate site fidelity exhibited by individual fish, we calculated the MCP of each fish’s daily tracks 
following the methods described above and calculated the Index of Refuge (IOR) between tracks of equivalent 
monitoring time.  

 



 
Atoll Research Bulletin, No. 625  5 

IOR= [OV (A1+A2)]/(A1+A2) 

IOR, the index of refuge, [OV (A1+A2)], is the area of overlap between two daily home ranges, (A1+A2) total 
area of both home ranges. A value of 0 indicates no overlap of use, and a measure of 1 indicating 100 percent 
overlap of use (Papastamatiou et al. 2009).  

We calculated the location and size of the MCP for each daily fish track with the mcp function in the 
adehabitatHR package and calculated the area of overlap between tracks with the gIntersection function in the 
rgeos package in R. We then used linear regression to test for a relationship between fish size and daily IOR 
using the lm function in R. Finally, to examine intra-individual overlap and determine whether giant trevally 
exhibit spatial overlap in home range among conspecifics (Morrissey et al. 2009), we calculated the IOR of 
the total MCPs of each giant trevally against each other to describe the overlap of home ranges and evaluate 
inter-individual space use following the methods described above. We then tested for a difference between 
intra-individual and inter-individual IOR with a Welch Two Sample t-test with the t.test function in R, a test 
of the hypothesis that range use was independent of the individual.  

 
Spatial Overlap with the MPA and Habitat Types 

To evaluate the extent to which the atoll’s MPA provides protection to giant trevally, we calculated the 
spatial overlap between the MCP of each tracked fish and the area of the MPA. The area of overlap was 
estimated with the gIntersection function in the rgeos package in R, and these overlapping areas were converted 
to percentages of giant trevally home range by dividing the area of overlap with total home range area to 
evaluate whether giant trevally space use was independent of the protections afforded by the protected area 
designation. This process was replicated to describe their habitat preferences by calculating the percentages of 
home range overlap with the deep lagoon and shallow water sand flats, the two dominant habitat types in the 
interior of Tetiaroa Atoll. 
 

RESULTS 

Between August 8 and October 23, 2014, we tagged and tracked five adult C. ignobilis with V13-1L 
continuous transmitters ranging in size from 79 to 90 (83.8 ± 4.5 sd) cm FL. The movements of these five fish 
were monitored from 20 to 71 h across periods spanning 32 to 42 d, with a total of 233 h of giant trevally 
observations (Table 1). 

 
 

Description of Home Range Size, Behavior, and Overlap with the MPA 

The home range size of giant trevally was small but variable among individuals, with estimates of their 
MCPs ranging from 0.7 to 8 km2 and a mean of 3.2 ± 2.5 SD km2 (Figure 2). The 95% KUDs ranged in size 
from 1 to 10.3 km2 with a mean of 4.1 ± 3.3 SD km2. Areas of core use ranged from 0.1 to 2.6 km2 and averaged 
1.1 km2 within the lagoon (Table 1). The overlap of giant trevally home range with Teriaroa’s MPA ranged 
from 0 to 52% with an average of 19 ± 19 SD % and giant trevally space use predominantly overlapped with 
deeper lagoon habitat, which comprised from 75% to 99% (90 ± 0.09 SD) of their home ranges (Table 1). 

The giant trevally with the largest home range, CAIG5, used 8 km2 of the lagoon (Figure 3). After recovery 
from tagging, we tracked this fish on three separate occasions and found that it consistently traversed the 
lagoon. During each tracking event, this individual began the day at the lagoon’s edge on the western portion 
of the atoll and moved east completing its day on the sand flats at the eastern part of the atoll. The home range 
of this fish had a 28% overlap with the MPA. The giant trevally with the second largest home range was 
CAIG4, which we monitored on five separate days where it utilized 3 km2 of lagoon  
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Table 1. The size, monitoring information, home range estimations, and spatial overlap with the Marine Protected Area 
(MPA) for giant trevally at Tetiaroa Atoll. 

Fish ID 
Fork 

length 
(cm) 

Detection 
Span 

(days) 

Days 
detected 

Hours 
Monitored 

MCP 
(km ²) 

95% 
KUD 
(km ²)  

50% 
KUD 
(km ²)  

% 
overlap 

with 
MPA 

% 
overlap 

with 
lagoon 

% 
overlap 

with 
flats 

CAIG1 83 44 4 20 0.7 1 0.1 52 92 8 
CAIG2 90 32 7 43 1.3 2.2 0.6 0 99 1 
CAIG3 79 39 18 71 2.8 3.5 1 16 86 14 
CAIG4 88 37 15 62 3 3.3 0.9 0 98 2 
CAIG5 79 41 10 37 8 10.3 2.6 28 75 25 

Mean ± sd 83.8±4.5 38.6±4.0 10.8±5.11 46.6±18.1 3.2±2.5 4.1±3.3 1.1±0.8 19 ±19 90±0.09 10±0.09 
 
 

 
habitat. The movements of this fish remained restricted to the northern sector of the atoll and exhibited 0% 
overlap with the MPA (Figure 3). 

CAIG3 was monitored for a total of 71 h and was detected within its home range 100% of the time we 
surveyed the eastern part of the lagoon, which suggests that this fish exhibits strong site fidelity to the eastern 
drop off (Figure 3). This fish spent the majority of its time making a circuit, traveling north and south along 
the lagoon’s eastern slope and exhibiting a 16% overlap with the MPA, repeatedly crossing its boundary. This 
individual utilized a home range (2.8 km2) similar to CAIG4 and the animal’s core use area (50% KUD) 
coincided with the southern part of the eastern drop off. The only time the fish was observed away from this 
area was while it made periodic visits to the central lagoon or while it was observed on the flats adjacent to the 
eastern drop off swimming in association with sting rays (Himantura fai). This association between giant 
trevally and sting rays was observed in three of the five individuals we tracked with some individual giant 
trevally spending up to 2 h swimming and feeding in association with these rays (Figure 4). The smallest 
recorded home ranges were 0.7 (CAIG1) and 1.3 km2 (CAIG2), however, these figures likely underestimate 
the size of these fish’s home range, as both individuals made repeated and predictable excursions from the 
lagoon to the reefs edge and we were unable to obtain complete coverage of their space use (Figure 2; Table 
1).  

 
 

Site Fidelity 
 

Despite the variation in home range size, the movements of each fish within their home ranges were 
spatially and temporally repeatable within individuals. IOR results indicate that all fish exhibited site fidelity 
to their respective home ranges with an average overlap in daily in space use of 31% (± 9, range: 15-41%). 
These values suggest this species exhibits relatively high site fidelity considering the mobility of this species. 
However, there was a not a significant relationship between fish size and daily IOR (F1,7, p = 0.6), which may 
be due to the limited size range of the fish we tracked. The mean intra-individual spatial overlap (31%) was 
significantly higher than the mean (9%) inter-individual IOR (t = -4.93, df = 16.87, p = 0.0001; Figure 5).  
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Figure 2. Tetitaroa Atoll with its MPA designated by the white polygon and the Minimum Convex Polygons 
(MCP), indicating the size and location of giant trevally home ranges observed during the study. 
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Figure 3. Tetitaroa Atoll with the Kernel Density Distributions (KUD) of CAIG5 (A), CAIG4 (B), and CAIG3 
(C). Their respective 95% KUDs are indicated by grey shading, while their 50% KUDs are indicated by red 
shading, and the MPA is designated by the white polygon that encompasses the southern half of Tetiaroa’s 
lagoon. 
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Figure 4. Images of CAIG3 hunting is association with a sting ray (Himantura fai), on the flats located in the 
Eastern side of Tetiaroa atoll. The red arrow indicates the position of the giant trevally and red circle highlights 
the sting ray. 
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Figure 5. The density distributions of Intra-individual and Inter-individual spatial overlap in space use, with 
black vertical dashed line indicating the mean (t = -4.9317, df = 16.866, p-value = 0.0001).  
 

DISCUSSION 

An understanding of giant trevally spatial ecology is important to designing effective fisheries management 
plans and this research provides a unique high-resolution perspective of the behavior and movement of this 
species. Our results indicate, that at the time scale of this study (i.e., 32 to 44 days), giant trevally exhibit 
repetitive spatial and temporal patterns of habitat use. Each fish had a well-defined home range and exhibited 
behavior that qualitatively and quantitatively suggest they exhibit site fidelity (Cooper 1978). However, the 
comparison of inter-individual and intra-individual overlap in space use suggests that despite the small size of 
the atoll, there is only moderate overlap in the home ranges of giant trevally. The drop off along the eastern 
perimeter of the lagoon was the only region with high overlap in giant trevally home ranges, as it was 
periodically utilized by four of the five giant trevally we studied. The use of transition zones between habitats 
for feeding is a common behavior in other top-predators and our observations of giant trevally behavior were 
consistent with the space use of sharks in analogous marine systems (Heithaus et al. 2006; Papastamatiou et 
al. 2009). The limited degree of intra-individual overlap suggests that competitive exclusion within the species 
may drive giant trevally to different behavioral types in their daily foraging routines (Hardin 1960). During 
instances in which giant trevally were observed swimming together, there was no evidence of site defense 
between conspecifics, which suggests that differential home ranges is not due to territoriality (Brown and 
Orians 1970), but rather resource partitioning in crowded coral reef communities (Sale 2006; Ross 2018). On 
the shallow sand flats, giant trevally were commonly observed swimming in association with sting rays for 
extended periods of time; these fish were often feeding, and our observations suggest that hunting giant trevally 
take advantage of the rays acute sensory system, which is adapted to find small organisms hiding in the sand, 
but it is unclear whether this relationship is parasitism or commensalism (Losey 1978). These joint hunting or 
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following relationships are common in marine trophic systems and presumably the collective foraging and or 
kleptoparasitism that occurs increases the fitness of the predators involved in the interaction (Karplus 1978; 
Ormond 1980; Strand 1988).  

Acoustic telemetry has become an important tool for marine spatial planning and evaluating the efficacy 
of MPA’s (Lennox et al. 2018). Our results suggest the current MPA at Tetiaroa offers limited protection to 
this mobile species from extractive fisheries, illustrated by the fact that several giant trevally home ranges were 
not included or individuals regularly traversed the MPA boundaries (Grüss et al. 2011). These findings in adult 
giant trevally were comparable to Wetherbee et al. (2004), who observed well defined home ranges of juvenile 
giant trevally monitored with active acoustic telemetry and limited overlap with a very small MPA (0.3 km2) 
in Hawaii. However, it should be noted that the relatively small core use areas suggest small MPA’s could be 
effective in offering partial protection to this species. The high spatial overlap of giant trevally home range 
with the deeper lagoon indicates that in atoll environments this habitat must be incorporated into MPAs for 
them to be effective in protecting this species, with particular attention to the transition zone between the deep 
lagoon and shallow flats described above, as giant trevally core use coincided with the interface between these 
two habitat types. Giant trevally preference for deep lagoon habitats may drive the limited use of the MPA as 
only 15% of the available deep lagoon habitat is located within its boundaries.  

Previous passive tracking studies indicate that giant trevally exhibit site fidelity to specific reefs over 
relativity long time scales (i.e., 1 to 2 years), but abandon their home ranges seasonally to undertake long 
distance and in some cases inter-island movements, to discrete aggregation sites presumably for reproduction 
(Meyer et al. 2007b; Lédée et al. 2015; Filous et al. 2017a). Although we were unable to observe these 
spawning related movements in our study, giant trevally are known to form large spawning aggregations 
(Meyer et al. 2007b; da Silva et al. 2015) and the efficacy of MPA's for this species can be enhanced by 
incorporating these aggregation sites within their boundaries (De Mitcheson and Erisman 2012; Russell et al. 
2012). Collectively, this body of evidence suggests that the utility of spatial protections for giant trevally is 
dependent on the scale of protection and conservation objectives of the management entity. Given their 
mobility, if the complete protection of giant trevally is desired, MPAs could be an effective tool for the 
conservation of this species if they are implemented on the scale of the entire atoll (Meyer et al. 2007b; Filous 
et al. 2017b). However, if the objective is not full-scale protection, but rather the management of catch-and-
release recreational fisheries, then the relatively small size of giant trevally core use areas within their home 
ranges indicates that small closures, like that employed at Tetiaroa, could help reduce fishing pressure on 
individuals within their home ranges and spawning aggregations if properly sited. In this scenario, a temporal 
rotation of small spatial closures could be effective in regulating the angling pressure imposed on giant trevally, 
provided post release mortality is minimized (Bartholomew and Bohnsack 2005; Lewin et al. 2006; Armstrong 
et al. 2013).  

Most giant trevally recreational fisheries adopt catch-and-release practices, but we know nothing about 
post-release survival rates beyond this study, in which all five animals survived. All of these fish were hooked 
in the corner of the jaw, suggesting fly-fishing may be a conservative way to effectively catch and release these 
fish, but our sample size is too small to make definitive conclusions and further research is needed to determine 
how factors such as gear type, hook placement, fight time, and the angler’s treatment of the fish affect their 
survival rates (Cooke and Philipp 2004; Cooke and Cowx 2006; Danylchuk et al. 2007; Lennox et al. 2017). 
Numerous physiologic changes from increased exercise, air exposure and tissue damage as a result of 
interactions with fishing gear can result in mortality (Brownscombe et al. 2013, 2015). Large predators such 
as giant trevally are inherently rarer than species at lower trophic levels (Purvis et al. 2000), and in the event 
that anglers mishandle fish by damaging the gills, fighting them to extreme exhaustion, or exposing them to 
air for extended periods of time while taking photos, they could negatively impact survival and alter population 
viability in a specific location (Sims and Danylchuk 2017). Furthermore, post release predation is an important 
consideration in the management of these fisheries. Other predators at Tetiaroa that could potentially threaten 
the survival of caught and released giant trevally include blacktip reef sharks (Carcharhinus melanopterus) 
and lemon sharks (Negaprion acutidens). Lennox et al. (2017) revealed that similar predator-rich coral atolls 
can yield high rates of post-release predation of fish released by recreational anglers, emphasizing the need for 
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anglers to handle species with care and that these environments require more attention from catch-and-release 
science. 

Effective fisheries management requires a sound understanding the space use and habitat preferences of a 
species (Sale et al. 2005; Grüss et al. 2011), and reef predators like giant trevally play an essential role in 
economic development and ecosystem function throughout the atolls of the tropical Indo-Pacific. As the 
popularity of this species continues to grow, recreational catch and release tourism for giant trevally could 
provide alternative livelihoods that improve the stability of coastal communities (Allison and Ellis 2001; Wood 
et al. 2013; Watson et al. 2016). However, this species is increasingly threatened by exploitation and 
anthropogenic development, and as a result understanding their habitat needs is essential to their conservation 
(Friedlander and Dalzell 2004; Friedlander et al. 2015; McLeod 2016). This study provides unique insight into 
the intra- and inter-individual spatial demands of giant trevally, and ultimately, shows that giant trevally can 
range widely throughout their respective atolls but occupy relatively small core use areas that coincide with 
the interface between lagoon and shallow water habitats. These data could be applied to developing 
conservation plans and fisheries management tactics for this species by assisting in MPA site selection, 
identification of spatial size requirements and the inclusion of critical habitats in similar atolls throughout the 
region.  
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